Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-07T10:55:33.225Z Has data issue: false hasContentIssue false

A new mound-building biota from the lower Carboniferous of Alabama

Published online by Cambridge University Press:  20 January 2020

David C. Kopaska-Merkel
Affiliation:
Geological Survey of Alabama, P.O. Box 869999, Tuscaloosa, Alabama35486-6999, USA
Douglas W. Haywick
Affiliation:
University of South Alabama, LSCB 136, Mobile, Alabama36688, USA
Richard G. Keyes
Affiliation:
P.O. Box 21061, Huntsville, Alabama35813, USA

Abstract

A small (1.2 m) columnar carbonate mound in shaley strata equivalent to the Hartselle Sandstone (lower Serpukhovian) near Woodville, northeastern Alabama, was built by a consortium of species unlike those of other Carboniferous mounds in the southeastern United States. The mound contains a new problematic microencruster, Aphralysia anfracta new species, along with encrusting bryozoans (Fistulipora M'Coy, 1849), nonskeletal microbes, and other microencrusters, including Aphralysia capriorae Mamet and Roux, 1975, in a carbonate mud matrix. Mound cavities are filled with three generations of carbonate and siliciclastic sediment. Other biotic constituents of the mound include oncoids, sponges (including Pileospongia Rigby, Keyes, and Horowitz, 1979), gastropods, crinoids, a tabulate coral, and coenobionts, including coccoid calcimicrobes. The mound biota, especially the microencrusters, is dramatically different from those of other Serpukhovian mounds that have been described from Alabama (made by various consortia of rugose corals, fenestrate bryozoans, crinoids, sponges, and nonskeletal microbes). Indeed, the Woodville mound extends the range of the lower Carboniferous encruster Aphralysia Garwood, 1914 to North America.

UUID: http://zoobank.org/d3988875-a7fb-4382-bd14-b17c083d87ad

Type
Articles
Copyright
Copyright © 2020, The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, A.E., 1984, Development of algal-foraminiferal-coral reefs in the lower Carboniferous of Furness, northwest England: Lethaia, v. 17, p. 233249.CrossRefGoogle Scholar
Agassiz, L., 1843, Recherches sur les Poissons Fossiles, Volume 3: La Petit-Pierre, France, Neuchâtel and Soleure, 390 p.Google Scholar
Andronaco, P., 1986, Lithofacies, depositional environments, and cyclicity of the Bangor Limestone in Blount County, north-central Alabama [MS thesis]: Tuscaloosa, University of Alabama, 250 p.Google Scholar
Aretz, M., 2002, Rugose corals and associated carbonate microfossils from the Brigantian (Mississippian) of Castelsec (Montagne Noire, southern France): Geobios, v. 35, p. 187200, doi:10.1016/S0016-6995(02)00018-9.CrossRefGoogle Scholar
Aretz, M., and Herbig, H.-G., 2003, Coral-rich bioconstruction in the Visean (late Mississippian) of southern Wales (Gower Peninsula, UK): Facies, v. 49, p. 221242, doi:10.1007/s10347-003-0033-y.CrossRefGoogle Scholar
Aretz, M., and Herbig, H.-G., 2008, Microbial-sponge and microbial-metazoan buildups in the late Viséan basin-fill sequence of the Jerada Massif (Carboniferous, NE Morocco): Geological Journal, v. 43, p. 307336, doi:10.1002/gj.1120.CrossRefGoogle Scholar
Belka, Z., 1981, The alleged algal genus Aphralysia is a foraminifer: Neues Jahrbuch fur Geologie und Palaontologie Monatshefte, v. 5, p. 257266.Google Scholar
Błaźejowski, B., 2009, Foraminifers from the Treskelodden Formation (Carboniferous–Permian) of south Spitsbergen: Polish Polar Research, v. 30, p. 193230, doi:10.4202/ppres.2009.10.CrossRefGoogle Scholar
Burdick, D.W., and Strimple, H.L., 1971, Crinoids from the Beech Creek Limestone, Golconda Group, St. Clair County, Illinois, part 2: Faunal studies of the type Chesterian, upper Mississippian of southwestern Illinois: University of Kansas Paleontological Contributions, no. 51, p. 1547.Google Scholar
Butts, C., 1917, Descriptions and correlations of the Mississippian formations of western Kentucky: Kentucky Geological Survey Series, v. 5, 119 p.Google Scholar
Butts, C., 1922, The Mississippian series of eastern Kentucky: Kentucky Geological Survey Series, v. 5, 188 p.Google Scholar
Cózar, P., Somerville, I.D., and Burgess, I., 2008, New foraminifers in the Visean/Serpukhovian boundary interval of the Lower Limestone Formation, Midland Valley, Scotland: Journal of Paleontology, v. 82, p. 906923, doi:10.1666/07-103.1.CrossRefGoogle Scholar
Cózar, P., Somerville, I.D., and Burgess, I., 2009, Foraminiferal, calcareous algal and problematica assemblages from the Mississippian Lower Limestone Formation in the Midland Valley, Scotland: Earth and Environmental Science Transactions of the Royal Society of Edinburgh, v. 100, p. 297309, doi:10.1017/S1755691010008029.CrossRefGoogle Scholar
Croneis, C., and Toomey, D.F., 1965, Gunsight (Virgilian) wewokellid sponges and their depositional environment: Journal of Paleontology, v. 39, p. 117.Google Scholar
Cushman, J.A., 1928, Additional genera of the Foraminifera: Contributions from the Cushman Laboratory for Foraminiferal Research, v. 4, p. 18.Google Scholar
Cushman, J.A., and Waters, J.A., 1928, Upper Paleozoic Foraminifera from Sutton County, Texas: Journal of Paleontology, v. 2, p. 358371.Google Scholar
Defrance, J.L.M., 1819, Dictionnaire des Sciences Naturelles, Volume 14: Paris, F.G. Levrault, 467 p.Google Scholar
Ettensohn, F.R., Ausich, W.I., Kammer, T.W., Johnson, W.K., and Chesnut, D.R. Jr., 2007, Carboniferous echinoderm zonation in the Appalachian Basin, eastern USA, in Wong, T.E., ed., Proceedings of the 25th International Congress on Carboniferous and Permian Stratigraphy, Utrecht, The Netherlands, 10–16 August 2003: Geologie en Mijnbouw, v. 84, p. 177189.Google Scholar
Galloway, J., and Kaska, H., 1957, Genus Pentremites and its species: Geological Society of America Memoir, v. 69, 130 p.Google Scholar
Garwood, E.J., 1914, Some new rock-building organisms from the lower Carboniferous beds of Westmorland: Geological Magazine, v. 51, p. 265271.CrossRefGoogle Scholar
Gibson, M.A., 1986, Paleoecology and biostratigraphic implications of a fenestrate bryozoan buildup in a non-carbonate environment, Pennington Formation (late Mississippian), Alabama: The Compass, v. 64, p. 2329.Google Scholar
Groves, J.R., 1983, Calcareous foraminifers and algae from the type Morrowan (Lower Pennsylvanian) region of northeastern Oklahoma and northwestern Arkansas: Oklahoma Geological Survey Bulletin, v. 133, 65 p.Google Scholar
Gutschick, R.C., 1965, Pterotocrinus from the Kinkaid Limestone (Chester, Mississippian) of Illinois and Kentucky: Journal of Paleontology, v. 39, p. 636646.Google Scholar
Hall, J., 1858, Paleontology of Iowa, in Hall, J., and Whitney, J.D., Report of the Geological Survey of the State of Iowa, Embracing the Results of Investigations Made During Portions of the Years 1855, 56 & 57: Palaeontology, Volume 1, Part 2: Des Moines, Legislature of Iowa, p. 473724.Google Scholar
Hall, J., 1859, Contributions to the palaeontology of Iowa, being descriptions of new species of Crinoidea and other fossils: Geological Report of Iowa, supplement to v. 1, pt. 2, p. 192.Google Scholar
Hall, J., 1883, New York State Geologist, Report for the Year 1882 (second annual): Brachiopoda, plates and explanations: Albany, New York, Weld, Parsons and Company, p. 3461.Google Scholar
Hallett, D., 1970, Foraminifera and algae from the Yoredale ‘Series’ (Visean–Namurian) of northern England, in Compte Rendu, Sixième Congrès International de Stratigraphie et de Géologie du Carbonifère, Sheffield, 1967: Maastricht, The Netherlands, E. Van Aelst, p. 873885.Google Scholar
Hambach, G., 1903, A revision of the Blastoideae: Transactions of the Academy of Science of St. Louis, v. 13, p. 167.Google Scholar
Haywick, D.W., Kopaska-Merkel, D.C., and Keyes, R., 2016, Petrographic and faunal characteristics of Monteagle and Hartselle-equivalent strata in northeast Alabama: Gulf Coast Association of Geological Societies Transactions, v. 66, p. 211229.Google Scholar
He, W., Shi, G.R., Feng, Q., Campi, M.J., Gu, S., Bu, J., Peng, Y., and Meng, Y., 2007, Brachiopod miniaturization and its possible causes during the Permian–Triassic crisis in deep water environments, South China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 252, p. 145163, doi:10.1016/j.palaeo.2006.11.040.CrossRefGoogle Scholar
Henbest, L.G., 1963, Biology, mineralogy, and diagenesis of some typical late Paleozoic sedentary Foraminifera and algal-foraminiferal colonies: Cushman Foundation for Foraminiferal Research Special Publication, v. 6, p. 144.Google Scholar
Horowitz, A.S., 1965, Crinoids from the Glen Dean limestone (middle Chester) of southern Indiana and Kentucky: Indiana Geological Survey Bulletin, v. 34, 51 p.Google Scholar
James, N.P., and Choquette, P.W., 1984, Diagenesis 9, Limestones—The meteoric diagenetic environment: Geoscience Canada, v. 11, p. 161194.Google Scholar
Jarochowska, E., and Munnecke, A., 2014, The Paleozoic problematica Wetheredella and Allonema are two aspects of the same organism: Facies, v. 60, p. 651662, doi:10.1007/s10347-014-0399-z.CrossRefGoogle Scholar
Jehn, P. J., and Young, L. M., 1976, Depositional environments of the Pitkin Formation, northern Arkansas: Journal of Sedimentary Research, v. 46, p. 377386.Google Scholar
Kaźmierczak, J., and Kempe, S., 1992, Recent cyanobacterial counterparts of Paleozoic Wetheredella and related problematic fossils: Palaios, v. 7, p. 294304.CrossRefGoogle Scholar
Keyes, R.G., 2014, Common and index macrofossils and stratigraphic sequence of the Mississippian System in the Tennessee Valley of north Alabama, in Puckett, T.M., and Rindsberg, A.K., eds., Stratigraphy and Depositional Systems in the Mississippian Strata of the Appalachian Plateau, northwest Alabama, A Guidebook for the 51st Annual Field Trip: Alabama Geological Society Guidebook, v. 51, p. 137196.Google Scholar
Keyes, R.G., 2015, Fossils of the Tennessee Valley: Huntsville, Alabama, Amazon, 131 p.Google Scholar
Keyes, R.G., 2018, Crinoids from the lower Bangor biota (Upper Mississippian) in northwest Alabama: Geological Society of America Abstracts with Programs, v. 50, no. 6, paper no. 88-5, doi: 10.1130/abs/2018AM-317809.CrossRefGoogle Scholar
Kopaska-Merkel, D.C., and Haywick, D.W., 2001, A lone biodetrital mound in the Chesterian (Carboniferous) of Alabama?: Sedimentary Geology, v. 145, p. 253268, doi:10.1016/S0037-0738(01)00151-8.CrossRefGoogle Scholar
Kopaska-Merkel, D.C., and Haywick, D.W., 2014, Small carbonate buildups in the Bangor Limestone (Chesterian) in and near Alabama, in Puckett, T.M., and Rindsberg, A.K., eds., Stratigraphy and Depositional Systems in the Mississippian Strata of the Appalachian Plateau, Northwest Alabama, A Guidebook for the 51st Annual Field Trip: Alabama Geological Society Guidebook, v. 51, p. 111138.Google Scholar
Kopaska-Merkel, D.C., and Rindsberg, A.K., 2016, Bioirrigation in Alph n. igen., arthropod cubichnia from the Mississippian Hartselle Sandstone of Alabama (USA): Geodinamica Acta, v. 28, p. 119, doi:10.1080/09853111.2015.1108569.CrossRefGoogle Scholar
Kopaska-Merkel, D.C., Mann, S.D., and Pashin, J.C., 2013, Sponge-microbial mound in Mississippian Tuscumbia Limestone, subsurface Walker County, Alabama, in Mancini, E.A., Morgan, W.A., Ahr, W., Parcell, W., Dias-Brito, D., and Harris, P.M., eds., Microbial Carbonate Reservoirs: American Association of Petroleum Geologists Bulletin, v. 97, p. 18711893, doi:10.1306/07151312195.Google Scholar
Krainer, K., Flűgel, E., Vachard, D., and Joachimski, M.M., 2003, A close look at late Carboniferous algal mounds: Schulterkofel, Carnic Alps, Austria: Facies, v. 49, p. 325350, doi:10.1007/s10347-003-0037-7.Google Scholar
Lees, A., and Miller, J., 1995, Waulsortian banks, in Monty, C.L.V., Bosence, D.W.J., Bridges, P.H., and Pratt, B.R., eds., Carbonate Mud-Mounds: Their Origin and Evolution: International Association of Sedimentologists Special Publication, v. 23, p. 191271.CrossRefGoogle Scholar
Lyon, S.S., 1857, Echinoderms, in Lyon, S.S., Cox, E.T., and Lesquereux, L., Palaeontological Report: Geological Report of Kentucky, v. 3, p. 467497.Google Scholar
Lyon, S.S., and Casseday, S.A., 1859, Description of nine new species of Crinoidea from the subcarboniferous rocks of Indiana and Kentucky: American Journal of Science and Arts, ser. 2, v. 28, p. 233246.Google Scholar
Lyon, S.S. and Casseday, S.A., 1860, Description of nine new species of Crinoidea from the subcarboniferous rocks of Indiana and Kentucky: American Journal of Science and Arts, Series 2, v. 29, p. 6879.Google Scholar
Mamet, B.L., and Boulvain, F., 1992, Microflore des monticules micritiques Frasniens ‘F2j’ de Belgique: Revue de Micropaléontologie, v. 35, p. 283302.Google Scholar
Mamet, B.L., and Préat, A., 2009, Algues et microfossiles problématiques du Dévonien Moyen du ‘Fondry des Chiens’ (bord sud du Synclinorium de Dinant, Belgique): Implications paléobathymétriques: Revue de Micropaléontologie, v. 52, p. 249263, doi:10.1016/j.revmic.2008.06.001.Google Scholar
Mamet, B.L., and Roux, A., 1975, Algues dévoniennes et carbonifères de la Téthys occidentale, troisième partie: Revue de Micropaléontologie, v. 18, p. 134187.Google Scholar
Mamet, B.L., Mortelmans, G., and Roux, A., 1978, Algues viseennes du Sondage de Turnhout (Campine, Belgique): Annales de la Société Géologique de Belgique, v. 101, p. 351383.Google Scholar
McChesney, J.H., 1859, Descriptions of new species of fossils from the Paleozoic rocks of the western states: Transactions of the Chicago Academy of Science, v. 1, 76 p.Google Scholar
McChesney, J. H., 1860, Descriptions of new fossils from the Paleozoic rocks of the western states: Chicago Academy of Science Transactions, v. 2, p. 7795.Google Scholar
M'Coy, F., 1849, On some new genera and species of Palaeozoic corals and Foraminifera: Annals and Magazine of Natural History, v. 2, p. 119136.CrossRefGoogle Scholar
Meek, F.B., and Worthen, A.H., 1860, Descriptions of new species of Crinoidea and Echinoidea from the Carboniferous rocks of Illinois, and other western states: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 12, p. 379397.Google Scholar
Meek, F.B., and Worthen, A.H., 1861, Descriptions of new Palaeozoic fossils from Illinois and Iowa: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 13, p. 128148.Google Scholar
Meek, F.B., and Worthen, A.H., 1866, Contributions to the palaeontology of Illinois and other western states: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 17, p. 251274.Google Scholar
Meek, F.B., and Worthen, A.H., 1873, Palaeontology of Illinois: Descriptions of invertebrates from Carboniferous System: Geology and Palaeontology, Illinois Geological Survey, v. 5, p. 323619.Google Scholar
Miller, S. A., and Gurley, W. F. E., 1895, Description of new species of Paleozoic Echinodermata: Illinois State Museum of Natural History Bulletin, v. 6, 25 p., 4 pls.Google Scholar
Miller, S.A., and Gurley, W.F.E., 1897, New species of crinoids, cephalopods, and other Palaeozoic fossils: Illinois State Museum Bulletin, v. 12, 69 p.Google Scholar
Milne-Edwards, H., and Haime, J., 1851, Monographie des polypiers fossiles des terrains paleozoïques précédée d'un tableau général de la classification des polypes: Muséum National d'Histoire Naturelle, Paris, Archives, v. 5, p. 1502.Google Scholar
Muir-Wood, H.M., and Cooper, G.A., 1960, Morphology, classification and life habits of the Productoidea (Brachiopoda): Geological Survey of America Memoir no. 81, 447 p.Google Scholar
Nestell, M.K., Nestell, G.P., Wardlaw, B.R., and Sweatt, M.J., 2006, Integrated biostratigraphy of foraminifers, radiolaria and conodonts in shallow and deep water middle Permian (Capitanian) deposits of the ‘Rader slide,’ Guadalupe Mountains, West Texas: Stratigraphy, v. 3, p. 161194.Google Scholar
Newberry, J.S., and Worthen, A.H., 1866, Descriptions of vertebrates: Geological Survey of Illinois, v. 2, p. 9134.Google Scholar
Niko, S., and Mapes, R.H., 2005, Early Carboniferous trigonoceratid nautilids from the Pitkin Formation of Arkansas, midcontinent North America: Paleontological Research, v. 9, p. 233241, doi:10.2517/prpsj.9.233.CrossRefGoogle Scholar
Norwood, J.G., and Pratten, H., 1855a, Notice of Producti found in the western states and territories, with descriptions of twelve new species: Journal of the Academy of Natural Sciences of Philadelphia, v. 3, p. 2332.Google Scholar
Norwood, J.G., and Pratten, H., 1855b, Notice of fossils from the Carboniferous Series of the western states belonging to the genera Spirifer, Bellerophon, Pleurotomaria, Macrocheilus, Natica, and Loxonema, with descriptions of eight new characteristic species: Journal of the Academy of Natural Sciences of Philadelphia, v. 3, p. 7177.Google Scholar
Owen, D.D., 1838, Report of a Geological Reconnaissance of the State of Indiana, Made in the Year 1837: Indianapolis, Bolton and Livingston, 34 p.Google Scholar
Owen, D.D., and Shumard, B.F., 1852, Descriptions of seven new species of Crinoidea from the subcarboniferous of Iowa and Illinois: Journal of the Academy of Natural Sciences of Philadelphia, v. 2, p. 8994.Google Scholar
Perkins, T.H., 1991, Calcisabella piloseta, a new genus and species of Sabellinae (Polychaeta: Sabellidae): Bulletin of Marine Science, v. 48, p. 261267.Google Scholar
Pratt, B.R., 1984, Epiphyton and Renalcis: Diagenetic microfossils from calcification of coccoid blue-green algae: Journal of Sedimentary Research, v. 54, p. 948971.Google Scholar
Pray, L.C., 1961, Geology of the Sacramento Mountains Escarpment, Otero County, New Mexico: New Mexico Bureau of Mines and Mineral Resources Bulletin, v. 35, 144 p.Google Scholar
Raymond, D.E., Osborne, W.E., Copeland, C.W., and Neathery, T.L., 1988, Alabama Stratigraphy: Geological Survey of Alabama Circular, v. 140, 97 p.Google Scholar
Riding, R., and Soja, C.M., 1993, Silurian calcareous algae, cyanobacteria, and microproblematica from the Alexander Terrane, Alaska: Journal of Paleontology, v. 67, p. 710728.CrossRefGoogle Scholar
Rigby, J.K., and Keyes, R., 1998, Wewokella costa new species, a large heteractinid calcareous sponge from the Upper Mississippian Hartselle Sandstone in northeastern Alabama: Journal of Paleontology, v. 72, p. 16.CrossRefGoogle Scholar
Rigby, J.K., Keyes, R. Jr, and Horowitz, A., 1979, Two new Mississippian sponges from northeastern Alabama: Journal of Paleontology, v. 53, p. 709719.Google Scholar
Rindsberg, A.K., 1994, Ichnology of the Upper Mississippian Hartselle Sandstone of Alabama, with notes on other Carboniferous formations: Alabama Geological Survey Bulletin, v. 158, 107 p.Google Scholar
Rododríguez, S., Arribas, M.E., Bermúdez-Rochas, D.D., Calvo, A., Côzar, P., Falces, S., Hernando, J.M., Mas, J.R., Moreno-Eiris, B., De la Peña, J.A., Perejôn, A., Sanchez-Chico, F., and Somerville, I.D., 2007, Stratigraphical and paleontological synthesis of the Sierra del Castillo succession (Late Viséan, Córdoba, SW Spain), in Wong, T.E., ed., Proceedings of the 15th International Congress on Carboniferous and Permian Stratigraphy, Utrecht, The Netherlands, 10–16 August 2003: Amsterdam, Royal Academy of Sciences, p. 205216.Google Scholar
Rodríguez, S., 2004, Taphonomic alterations in upper Viséan dissepimented rugose corals from the Sierra del Castillo unit (Carboniferous, Córdoba, Spain): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 214, p. 135153, doi:10.1016/j.palaeo.2004.07.026.CrossRefGoogle Scholar
Rodríguez, S., and Kopaska-Merkel, D. C., 2014, Mississippian rugose corals from Alabama: A review: Journal of Paleontology, v. 88, p. 829850, doi:10.1666/13-100.Google Scholar
Rodríguez-Martínez, M., Mas, R. and Reitner, J., 2010, Micro-framework reconstruction from peloidal-dominated mud mounds (Viséan, SW Spain): Facies, v. 56, p. 139156, doi:10.1007/s10347-009-0201-9.CrossRefGoogle Scholar
Rodríguez-Martínez, M., Moreno-González, I., Mas, R., and Reitner, J., 2012, Paleoenvironmental reconstruction of microbial mud mound derived boulders from gravity-flow polymictic megabreccias (Visean, SW Spain): Sedimentary Geology, v. 263–264, p. 157173, doi:10.1016/j.sedgeo.2011.06.010.CrossRefGoogle Scholar
Roemer, F., 1851, Monographie der fossilen Crinoidenfamilie der Blastoideen und der Gattung Pentatrematites im Besonderen: Wiegmann's Archiv für Naturgeschichte, v. 17, no. 1, p. 323397.Google Scholar
Saint John, O., and Worthen, A.H., 1875, Geology and paleontology, part II, Palaeontology of Illinois, Section 1, Descriptions of fossil fishes: Geological Survey of Illinois, v. 6, p. 245488.Google Scholar
Say, T., 1825, On two genera and several species of Crinoidea: Journal of the Academy of Natural Science of Philadelphia, ser. 1, v. 4, p. 289296 (reprinted 1895, in The paleontological writings of Thomas Say: Bulletins of American Paleontology, v. 1, p. 347–354).Google Scholar
Shen, J.-W., and Webb, G.E., 2005, Metazoan-microbial framework fabrics in a Mississippian (Carboniferous) coral-sponge-microbial reef, Monto, Queensland, Australia: Sedimentary Geology, v. 178, p. 113133, doi:10.1016/j.sedgeo.2005.03.011.CrossRefGoogle Scholar
Shen, J.-W., and Webb, G.E., 2008, The role of microbes in reef-building communities of the Cannindah limestone (Mississippian), Monto region, Queensland, Australia: Facies, v. 54, p. 89105, doi:10.1007/s10347-007-0116-2.CrossRefGoogle Scholar
Shen, J.-W., and Webb, G.E., 2010, Microbial mounds prior to the Frasnian-Famennian extinctions, Hantang, Guilin, South China: Sedimentology, v. 57, p. 16151639, doi:10.1111/j.1365-3091.2010.01158.x.CrossRefGoogle Scholar
Shumard, B.F., 1855, Description of new species of organic remains: Missouri Geological Survey, v. 2, p. 185208.Google Scholar
Sutton, A.H., 1934, Evolution of Pterotocrinus in the Eastern Interior Basin during the Chester epoch: Journal of Paleontology, v. 8, p. 393416.Google Scholar
Taylor, P.D., and Vinn, O., 2006, Convergent morphology in small spiral worm tubes (‘Spirorbis’) and its palaeoenvironmental implications: Journal of the Geological Society, London, v. 163, p. 225228, doi:10.1144/0016-764905-145.CrossRefGoogle Scholar
Taylor, P.D., Vinn, O., and Wilson, M.A., 2010, Evolution of biomineralization in lophophorates: Special Papers in Palaeontology, v. 84, p. 317333, doi:10.1111/j.1475-4983.2010.00985.x.Google Scholar
Thomas, W.A., 1972, Mississippian stratigraphy of Alabama: Alabama Geological Survey Monograph, v. 12, 121 p.Google Scholar
Thomas, W.A., and Mack, G.H., 2013, Paleogeographic relationship of a Mississippian barrier-island and shelf-bar system (Hartselle Sandstone) in Alabama to the Appalachian-Ouachita orogenic belt: Geological Society of America Bulletin, v. 93, p. 619, doi:10.1130/0016-7606(1982)93<6:PROAMB>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Troost, G., 1850, A list of the fossil crinoids of Tennessee: American Association for the Advancement of Science, Proceedings (1849), ser. 2, v. 8, p. 5964 (nonsystematic, but names cited by later workers).Google Scholar
Ulrich, E.O., 1890, Palaeozoic Bryozoa: Illinois Geological Survey, v. 8, p. 293688.Google Scholar
Ulrich, E.O., 1917, The formations of the Chester series in western Kentucky and their correlatives elsewhere: Kentucky Geological Survey Series, v. 5, 272 p.Google Scholar
Ulrich, E.O., and Bassler, R.S., 1904, A revision of the Paleozoic Bryozoa, part 1: On genera and species of Ctenostomata: Smithsonian Miscellaneous Collection, v. 45, p. 256294.Google Scholar
Urbanek, A., 1993, Biotic crises in the history of upper Silurian graptoloids: A palaeobiological model: Historical Biology, v. 7, p. 2955.Google Scholar
Vachard, D., and Aretz, M., 2004, Biostratigraphical precisions on the early Serpukhovian (Late Mississippian), by means of a carbonate algal microflora (cyanobacteria, algae and pseudo-algae) from La Serre (Montagne Noire, France): Geobios, v. 37, p. 643666, doi:10.1016/j.geobios.2003.05.008.CrossRefGoogle Scholar
Vachard, D., and Beckary, S., 1991, Algues et foraminifères bachkiriens des coal balls de la Mine Rosario (Truebano, Léon, Espagne): Revue de Paléobiologie, v. 10, p. 315357.Google Scholar
Vachard, D., and Krainer, K., 2001, Smaller foraminifers of the upper Carboniferous Auernig Group, Carnic Alps (Austria/Italy): Rivista Italiana di Paleontologia e Stratigrafia, v. 107, p. 147168, doi:10.13130/2039-4942/5430.Google Scholar
Vachard, D., Martini, R., Zaninetti, L., and Zambetakis-Lekkas, A., 1993, Revision micropaléontologique (Foraminiferes, Algues) du Permien inférieur (Sakmarien) et supérieur (Dorashamien) du Mont Beletsi (Attique, Grece): Bollettino della Società Paleontologica Italiana, v. 32, p. 89112.Google Scholar
Vachard, D., Hauser, M., Martini, R., Zaninetti, L., Matter, A., and Peters, T., 2001, New algae and problematica of algal affinity from the Permian of the Aseelah Unit of the Batain Plain, (East Oman) : Geobios, v. 34, p. 375404, doi:10.1016/S0016-6995(01)80003-6.CrossRefGoogle Scholar
Vachard, D., Cózar, P., Aretz, M., and Izart, A., 2016, Late Viséan–early Serpukhovian cyanobacteria and algae from the Montagne Noire (France): Taxonomy and biostratigraphy: Bulletin of Geosciences, v. 91, p. 433466, doi:10.3140/bull.geosci.1613.Google Scholar
Vinn, O., 2010, Shell structure of helically coiled microconchids from the Middle Triassic (Anisian) of Germany: Palaeontologische Zeitschrift, v. 84, p. 495499, doi:10.1007/s12542-010-0064-7.CrossRefGoogle Scholar
Vinn, O., and Mutvei, H., 2005, Observations on the morphology and affinities of cornulitids from the Ordovician of Anticosti Island and the Silurian of Gotland: Journal of Paleontology, v. 79, p. 726737, doi:10.1666/0022-3360(2005)079[0726:OOTMAA]2.0.CO;2.CrossRefGoogle Scholar
Vinn, O., and Wilson, M.A., 2010, Microconchid-dominated hardground association from the late Pridoli (Silurian) of Saaremaa, Estonia: Palaeontologia Electronica, v. 13, 12 p.Google Scholar
Vologdin, A.G., 1932, Archaeocyaths of Siberia: Faunas from the Cambrian Limestones of Altai: Leningrad, Chief Geological Survey Directorate Press, 106 p.Google Scholar
Webb, G.E., 1987, Late Mississippian thrombolite bioherms from the Pitkin Formation of northern Arkansas: Geological Society of America Bulletin, v. 99, p. 686698.2.0.CO;2>CrossRefGoogle Scholar
Webb, G.E., 1994, Non-Waulsortian Mississippian bioherms: A comparative analysis: Canadian Society of Petroleum Geologists Memoir, v. 17, p. 701712.Google Scholar
Webb, G.E., 1999, Youngest early Carboniferous (late Visean) shallow-water patch reefs in eastern Australia (Rockhampton Group, Queensland): Combining quantitative micro- and macro-scale data: Facies, v. 41, p. 111140.CrossRefGoogle Scholar
Webb, G.E., 2005, Quantitative analysis and paleoecology of earliest Mississippian microbial reefs, Gudman Formation, Queensland, Australia: Not just post-disaster phenomena: Journal of Sedimentary Research, v. 75, p. 875894, doi:10.2110/jsr.2005.068.CrossRefGoogle Scholar
Weller, S., 1920, The Chester Series in Illinois: The Journal of Geology, v. 28, p. 281303.CrossRefGoogle Scholar
Weller, S., 1926, Faunal zones in the standard Mississippian section: The Journal of Geology, v. 34, p. 320335.CrossRefGoogle Scholar
Weller, J.M., 1936, Carboniferous trilobite genera: Journal of Paleontology, v. 10, p. 704714.Google Scholar
Wilson, J.L., 1975, The lower Carboniferous Waulsortian facies, in Wilson, J.L., Carbonate Facies in Geologic History: New York, Springer-Verlag, p. 148168.CrossRefGoogle Scholar
Wilson, M.A., Vinn, O., and Yancey, T.E., 2010, A new microconchid tubeworm from the Artinskian (lower Permian) of central Texas, USA: Acta Palaeontologica Polonica, v. 56, p. 785791, doi:10.4202/app.2010.0086.CrossRefGoogle Scholar
Wood, A., 1948, Sphaerocodium,’ a misinterpreted fossil from the Wenlock Limestone: Proceedings of the Geologists’ Association, v. 59, p. 922.CrossRefGoogle Scholar
Worthen, A.H., 1860, Notice of a new species of Platycrinus and other fossils from the Mountain Limestone of Illinois and Iowa: Transactions of the St. Louis Academy of Sciences, v. 1, p. 569571.Google Scholar
Worthen, A.H., 1884, Descriptions of two new species of Crustacea, fifty-one species of Mollusca, and three species of Crinoids, from the Carboniferous Formation of Illinois and adjacent states: Illinois State Museum of Natural History, Bulletin, no. 2, 27 p.Google Scholar
Zhan, R., and Vinn, O., 2007, Cornulitid epibionts on brachiopod shells from the Late Ordovician (middle Ashgill) of East China: Estonian Journal of Earth Sciences, v. 56, p. 101108.Google Scholar