Skip to main content Accessibility help
×
Home

Halkieriids in Middle Cambrian phosphatic limestones from Australia

  • Susannah M. Porter (a1)

Abstract

Halkieriids are part of a distinctive Early Cambrian fauna, the “Tommotian fauna” sensu Sepkoski (1992), that is preserved mostly as phosphatic and secondarily phosphatized skeletal elements. The distinctiveness of the Tommotian fauna is ascribed, in part, to its preferential elimination during the end-Early Cambrian mass extinction event (the “Botomian extinction”). Newly discovered halkieriids in phosphatic limestones of the Middle Cambrian (Ptychagnostus gibbus Zone) Monastery Creek Formation, Georgina Basin, Australia, now indicate that this group not only survived the end-Early Cambrian extinction, but was at least locally abundant thereafter. Most of the Georgina halkieriid sclerites can be accommodated within a single species, Australohalkieria superstes new genus and species, described and partly reconstructed here. Remaining sclerites probably represent two additional but rare halkieriid species. Additional newly discovered sclerites may have affinities with the sachitids, another problematic “Tommotian” taxon related to the halkieriids. Rare wiwaxiid sclerites extend the taphonomic and geographic distribution of this clade. The Monastery Creek Formation provides a valuable window on Middle Cambrian life, both because it provides information that is distinct from but complementary to other, similarly aged windows (e.g., the Burgess Shale) and because it represents a taphonomic window similar to those that preserve Early Cambrian small shelly problematica. A decline during the Cambrian in conditions necessary for the early diagenetic phosphatization of shallow-shelf and platform limestones may have effectively closed this taphonomic window, potentially biasing apparent patterns of diversity change through the period.

Copyright

References

Hide All
Allison, P. A. 1988. Phosphatized soft-bodied squids from the Jurassic Oxford Clay. Lethaia, 21:403410.
Baxter, J. M., Jones, A. M., and Sturrock, M. G. 1987. The ultrastructure of aesthetes in Tonicella-Marmorea (Polyplacophora, Ischnochitonina) and a new functional hypothesis. Journal of Zoology, 211:589604.
Baxter, J. M., Sturrock, M. G., and Jones, A. M. 1990. The structure of the intrapigmented aesthetes and the propoperiostracum layer in Callochiton-Achatinus (Mollusca, Polyplacophora). Journal of Zoology. 220:447468.
Bengtson, S. 1985a. Taxonomy of disarticulated fossils. Journal of Paleontology, 59:13501358.
Bengtson, S. 1985b. Redescription of the Lower Cambrian Halkieria obliqua Poulsen. Geologiska Föreningens i Stockhom Förhandlingar, 107:101106.
Bengtson, S. 1992. The cap-shaped Cambrian fossil Maikhanella and the relationship between coeloscleritophorans and molluscs. Lethaia. 25:401420.
Bengtson, S. 1999. Hierarchical processes in coeloscleritophoran skeletogenesis. Geological Society of America Abstracts with Programs. 31:A363.
Bengtson, S., and Morris, S. Conway 1984. A comparative study of Lower Cambrian Halkieria and Middle Cambrian Wiwaxia. Lethaia, 17:307329.
Bengtson, S., and Hou, X. 2001. The integument of Cambrian chancelloriids. Acta Palaeontologica Polonica, 46:122.
Bengtson, S., and Missarzhevsky, V. V. 1981. Coeloscleritophora—a major group of enigmatic Cambrian metazoans, p. 1921. In Taylor, M. E. (ed.), Short Papers for the Second International Symposium on the Cambrian System 1981. United States Geological Survey Open-File Report, 81–743 p.
Bengtson, S., Morris, S. Conway, Cooper, B. J., Jell, P. A., and Runnegar, B. N. 1990. Early Cambrian fossils from South Australia. Memoirs of the Association of Australian Palaeontologists, 9:1364.
Bottjer, D. J. 1981. Periostracum of the gastropod Fusitriton oregonensis: natural inhibitor of boring and encrusting organisms. Bulletin of Marine Sciences, 31:916921.
Brasier, M. D. 1990. Phosphogenic events and skeletal preservation across the Precambrian-Cambrian boundary interval, p. 289303. In Notholt, A. G. and Jarvis, I. (eds.), Phosphorite Research and Development, Geological Society Special Publication (London), 52 p.
Brasier, M. D., and Hewitt, R. A. 1979. Environmental setting of fossiliferous rocks from the uppermost Proterozoic—Lower Cambrian of central England. Palaeogeography, Palaeoclimatology, Palaeoecology, 27:3557.
Butterfield, N. J. 1990. A reassessment of the enigmatic Burgess Shale fossil Wiwaxia corrugata (Matthew) and its relationship to the polychaete Canadia spinosa Walcott. Paleobiology, 16:287303.
Butterfield, N. J. 1994. Burgess Shale-type fossils from a Lower Cambrian shallow-shelf sequence in northwestern Canada. Nature, 369:477479.
Butterfield, N. J., and Nicholas, C. J. 1996. Burgess Shale-type preservation of both mineralizing and ‘shelly’ Cambrian organisms from the Mackenzie Mountains, northwestern Canada. Journal of Paleontology, 70:893899.
Cherns, L., and Wright, V. P. 2000. Missing molluscs as evidence of large-scale, early skeletal aragonite dissolution in a Silurian sea. Geology, 28:791794.
Cohen, B. L., Holmer, L. E., and Lüter, C. 2003. The brachiopod fold: a neglected body plan hypothesis. Palaeontology, 46:5965.
Morris, S. Conway 1985. The Middle Cambrian metazoan Wiwaxia corrugata (Matthew) from the Burgess Shale and Ogygopsis Shale, British Columbia, Canada. Philosophical Transactions of the Royal Society of London, series B, 307:507582.
Morris, S. Conway 1995. Enigmatic shells, possibly halkieriid, from the Middle Cambrian Burgess Shale, British Columbia. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 195:319–31.
Morris, S. Conway, and Chapman, A. J. 1997. Lower Cambrian halkieriids and other coeloscleritophorans from Aksu-Wushi, Xinjiang, China. Journal of Paleontology, 71:622.
Morris, S. Conway, and Peel, J. S. 1990. Articulated halkieriids from the Lower Cambrian of North Greenland. Nature, 345:802805.
Morris, S. Conway, and Peel, J. S. 1995. Articulated halkieriids from the Lower Cambrian of North Greenland and their role in early protostome evolution. Philosophical Transactions of the Royal Socitey of London, series B, 347:305358.
Morris, S. Conway, McIlroy, D., and Rushton, A. W. A. 1998. Lower Cambrian halkieriids from Oxfordshire, UK. Geological Magazine, 135:501508.
Cook, P. J., and McElhinny, M. W. 1979. A re-evaluation of the spatial and temporal distribution of sedimentary phosphate deposits in the light of plate tectonics. Economic Geology, 74:315330.
Debrenne, F., Rozanov, A. Y., and Webers, G. F. 1984. Upper Cambrian Archaeocyatha from Antarctica. Geological Magazine, 121:291299.
de Keyser, F., and Cook, P. J. 1972. Geology of the Middle Cambrian phosphorites and associated sediments of northwestern Queensland. Bureau of Mineral Resources Geology and Geophysics Bulletin (Australia), 138, 79 p.
Dzik, J. 1994. Evolution of ‘small shelly fossils’ assemblages of the Early Paleozoic. Acta Palaeontologica Polonica, 39:247313.
Fischer, F. P., Maile, W., and Renner, M. 1980. Die Mantelpapillen und Stachelm von Acanthochiton fascicularis L. (Mollusca, Polyplacophora). Zoomorphologie, 94:121131.
Fleming, P. J. G. 1973. Bradoriids from the Xystridura zone of the Georgina Basin, Queensland. Geological Survey of Queensland Publication 356, Palaeontological Papers, 31:19.
Geyer, G., and Shergold, J. 2000. The quest for internationally recognized divisions of Cambrian time. Episodes, 23:188196.
Geyer, G., Peng, S., and Shergold, J. H. 2000. Correlation chart for major Cambrian areas. Episodes, 23:188196.
Gravestock, D. I., and Shergold, J. H. 2001. Australian Early and Middle Cambrian sequence biostratigraphy with implications for species diversity and correlation, p. 107136. In Zhuravlev, A. Y. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.
Haas, W., and Kriesten, K. 1975. Studien über das Perinotum-Epithel und die Bildung der Kalkstacheln von Lepidochitona cinerea (L.) (Placophora). Biomineralisation—Forschungsberichte, 9:1127.
Henderson, R. A., and Mackinnon, D. I. 1981. New Cambrian inarticulate Brachiopoda from Australasia and the age of the Tasman Formation. Alcheringa, 5:289309.
Hinz-Schallreuter, I. 1993. Ostracodes from the Middle Cambrian of Australia. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 188:305326.
Holmer, L. E., Skovsted, C. B., and Williams, A. 2002. A stem group brachiopod from the Lower Cambrian: support for a Micrina (halkieriid) ancestry. Palaeontology, 45:875882.
James, N. P., and Klappa, C. F. 1983. Petrogenesis of Early Cambrian reef limestones, Labrador, Canada. Journal of Sedimentary Petrology, 53:10511096.
Jell, P. A. 1981. Thambetolepis delicata gen. et sp. nov., an enigmatic fossil from the Early Cambrian of South Australia. Alcheringa, 5:8593.
Jones, P. J., and Mackenzie, K. G. 1980. Queensland Middle Cambrian Bradoriida (Crustacea): new taxa, palaeobiogeography and biological affinities. Alcheringa, 4:203225.
Khomentovskii, V. V., and Karlova, G. A. 1994. Ecological peculiarities of the Vendian-Cambrian small shelly fauna in the Siberian Platform. Stratigraphy and Geological Correlation, 2:206215.
Kouchinsky, A. V. 2000a. Shell microstructures in Early Cambrian molluscs. Acta Palaeontologica Polonica, 45:119150.
Kouchinsky, A. V. 2000b. Skeletal microstructures of hyoliths from the Early Cambrian of Siberia. Alcheringa, 24:6581.
Kruse, P. D. 1998. Cambrian palaeontology of the eastern Wiso and western Georgina basins. Northern Territory Geological Survey Report, 9, 68 p.
Landing, E. 1992. Lower Cambrian of southeastern Newfoundland: epeirogeny and Lazarus faunas, lithofacies-biofacies linkages, and the myth of a global chronostratigraphy, p. 283309. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum Press, New York.
Lindsay, J. F., Korsch, J., and Wilford, R. 1987. Timing the breakup of a Proterozoic supercontinent: evidence from Australian intracratonic basins. Geology, 15:10611064.
Martill, D. M. 1988. Preservation of fish in the Cretaceous Santana Formation of Brazil. Palaeontology, 31:118.
Matthews, S. C., and Missarzhevsky, V. V. 1975. Small shelly fossils of late Precambrian and early Cambrian age: a review of recent work. Journal of the Geological Society (London), 131:289304.
Mehl, D. 1996. Organization and microstructure of the chancelloriid skeleton: implications for the biomineralization of the Chancelloriidae. Bulletin de l'Institut océanographique (Monaco), 14:377385.
Mehl, D. 1998. Porifera and Chancelloriidae from the Middle Cambrian of the Georgina Basin, Australia. Palaeontology, 41:11531182.
Mount, J. F., and Signor, P. W. 1992. Faunas and facies—fact and artifact: paleoenvironmental controls on the distribution of Early Cambrian faunas, p. 2751. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa, 10. Plenum Press, New York.
Müller, K. J. 1985. Exceptional preservation in calcareous nodules. Philosophical Transactions of the Royal Society of London, series B, 311:6773.
Müller, K. J., and Hinz, I. 1992. Cambrogeorginidae fam. nov., soft-integumented Problematica from the Middle Cambrian of Australia. Alcheringa, 16:333353.
Müller, K. J., and Hinz-Schallreuter, I. 1993. Palaeoscolecid worms from the Middle Cambrian of Australia. Palaeontology, 36:549592.
Öpik, A. A. 1979. Middle Cambrian agnostids: systematics and biostratigraphy. Bureau of Mineral Resources Bulletin (Geology and Geophysics, Australia), 172, 188 p.
Öpik, A. A., Banks, M. R., Casey, J. N., Daily, B., Gilbert-Tomlinson, J., Noakes, L. C., Singleton, L. P., Thomas, D. E., and Traves, D. M. 1957. The Cambrian geology of Australia. Bureau of Mineral Resources Bulletin (Geology and Geophysics, Australia), 49, 284 p.
Palmer, A. R. 1982. Biomere boundaries: a possible test for extraterrestrial perturbation of the biosphere. Geological Society of America Special Paper, 190:469475.
Poulsen, C. 1967. Fossils from the Lower Cambrian of Bornholm. Danske Videnskabernes Selskab, Matematisk-Fysiske Meddelelser, 32, 48 p.
Qian, Y., and Bengtson, S. 1989. Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossils and Strata, 24:1156.
Rogers, J. K., and Crase, N. J. 1980. The Phosphate Hill rock phosphate deposit, northwestern Queensland, Australia—an outline of geological development, p. 307328. In Sheldon, R. P. and Burnett, W. C. (eds.), Fertilizer Mineral Potential in Asia and the Pacific. Proceedings of the Fertilizer Raw Materials Resources Workshop, August 20–24, 1979. East-West Resource Systems Institute, Honolulu, Hawaii.
Roy, K., and Fåhræus, L. E. 1989. Tremadocian (Early Ordovician) nauplius-like larvae from the Middle Arm Point Formation, Bay of Islands, western Newfoundland. Canadian Journal of Earth Sciences, 26:18021806.
Runnegar, B. 1985. Shell microstructures of Cambrian molluscs replicated by phosphate. Alcheringa, 9:245257.
Runnegar, B. 2000. Body building in Halkieria and comparisons with chitons and other molluscs. Geological Society of America Abstracts with Programs, 32:A72.
Runnegar, B., and Jell, P. A. 1976. Australian Middle Cambrian molluscs and their bearing on early molluscan evolution. Alcheringa, 1:109138.
Russell, R. T., and Trueman, N. A. 1971. The geology of the Duchess phosphate deposits, northwestern Queensland, Australia. Economic Geology, 66:11861214.
Sandstrom, M. W. 1986. Proterozoic and Cambrian phosphorites—specialist studies: geochemistry of organic matter in Middle Cambrian phosphorites from the Georgina Basin, northeastern Australia, p. 268279. In Cook, P. J. and Shergold, J. H. (eds.), Phosphate Deposits of the World, Volume 1, Proterozoic and Cambrian Phosphorites. Cambridge University Press, Cambridge.
Sepkoski, J. J. Jr. 1992. Proterozoic-Early Cambrian diversification of metazoans and metaphytes, p. 553561. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere. Cambridge University Press, Cambridge.
Shergold, J. H., and Southgate, P. N. 1986. Middle Cambrian phosphatic and calcareous lithofacies along the eastern margin of the Georgina Basin, Western Queensland. Geological Society of Australia, Sydney. Australian Sedimentologists Group Field Guide, series 2. Geological Society of Australia, Sydney, 89 p.
Signor, P. W. 1992. Taxonomic diversity and faunal turnover in the Early Cambrian: did the most severe mass extinction of the Phanerozoic occur in the Botomian Stage? 5th North American Paleontological Convention, Abstracts with Programs, 272.
Soudry, D., and Southgate, P. N. 1989. Ultrastructure of a Middle Cambrian primary nonpelletal phosphorite and its early transformation into phosphate vadoid: Georgina Basin, Australia. Journal of Sedimentary Petrology, 59:5364.
Southgate, P. N., and Shergold, J. H. 1991. Application of sequence stratigraphic concepts to Middle Cambrian phosphogenesis, Georgina Basin, Australia. Journal of Australian Geology and Geophysics, 12:119144.
Southgate, P. N., Laurie, J. R., Shergold, J. H., and Armstrong, K. J. 1988. Stratigraphic drilling in the Georgina Basin Burke River Structural Belt, August 1986–January 1987. Bureau of Mineral Resources, Geology and Geophysics Record, 1988/1, 44 p.
Speyer, S. E., and Chatterton, B. D. E. 1989. Trilobite larvae and larval ecology. Historical Biology, 3:2760.
Taylor, J. D., and Kennedy, W. J. 1969. The influence of the periostracum on the shell structure of bivalve molluscs. Calcified Tissue Research, 3:274283.
Tevesz, M. J. S., and Carter, J. G. 1980. Environmental relationships of shell form and structure of unionacean bivalves, p. 295322. In Rhoads, D. C. and Lutz, R. A. (eds.), Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change, 1. Plenum Press, New York.
Walossek, D., Hinz-Schallreuter, I., Shergold, J. H., and Müller, K. J. 1993. Three-dimensional preservation of arthropod integument from the Middle Cambrian of Australia. Lethaia, 26:715.
Wilby, P. R. 1993. The role of organic matrices in post-mortem phosphatization of soft-tissues. Kaupia, Darmstädter Beiträger zur Naturgeschichte, 2:99113.
Wilby, P. R., and Briggs, D. E. G. 1997. Taxonomic trends in the resolution of detail preserved in fossil phosphatized soft tissues. Géobios (Mémoire Special), 20:493502.
Williams, A., and Holmer, L. E. 2002. Shell structure and inferred growth, functions and affinities of the sclerites of the problematic Micrina. Palaeontology, 45:845873.
Wood, R. A., Evans, K. R., and Zhuravlev, A. Y. 1992. A new post-early Cambrian archaeocyath from Antarctica. Geological Magazine, 129:491495.
Xiao, S., and Knoll, A. H. 1999. Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstätte, South China. Lethaia, 32:219240.
Xiao, S., Zhang, Y., and Knoll, A. H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391:553558.
Zhao, Y., and Bengtson, S. 1999. Embryonic and post-embryonic development of the early cnidarian Olivooides. Lethaia, 32:181195.
Zhao, Y., Qian, Y., and Li, X.-S. 1994. Wiwaxia from Early-Middle Cambrian Kaili Formation in Taijiang, Quizhou. Acta Palaeontologica Sinica, 33:359–356.
Zhuravlev, A. Y., and Wood, R. A. 1996. Anoxia as the cause of the mid-Early Cambrian extinction event. Geology, 24:311314.

Halkieriids in Middle Cambrian phosphatic limestones from Australia

  • Susannah M. Porter (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed