Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-19T16:17:03.484Z Has data issue: false hasContentIssue false

Devonian Entobia borings from Nevada, with a revision of Topsentopsis

Published online by Cambridge University Press:  11 August 2017

Leif Tapanila*
Affiliation:
Department of Geosciences, Idaho State University, Pocatello 83209-8072

Abstract

Entobia, a sponge boring commonly consisting of interconnected chambers and galleries (i.e., it is camerate), is a dominant agent of bioerosion in Mesozoic and Cenozoic marine carbonates. A similar camerate boring, Topsentopsis devonica, is widely recognized from the Devonian, and its classification is reappraised here. This paper synonymizes Topsentopsis with the senior synonym Entobia, making E. devonica n. comb. the oldest representative of the ichnogenus. New specimens of E. devonica borings in stromatoporoids and megalodont bivalves are described from the Frasnian Guilmette Formation of Nevada, which includes breccias of the Alamo Bolide Impact. The borings occur in skeletal substrates both within and above the impact event breccias, demonstrating their existence prior to the impact and their survival of the catastrophic event. The Nevada discovery extends the geographic distribution of the oldest Entobia to include the western and midcontinental United States, western Canada, and eastern Europe. E. devonica was an important bioerosive agent during the Givetian–Frasnian, but it is unknown following the Frasnian–Famennian mass extinction.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acker, K. L., and Risk, M. J. 1985. Substrate destruction and sediment production by the boring sponge Cliona caribbaea on Grand Cayman Island. Journal of Sedimentary Petrology, 55:705711.Google Scholar
Benner, J. S., Ekdale, A. A., and De Gibert, J. M. 2004. Macroborings (Gastrochaenolites) in Lower Ordovician hardgrounds of Utah: Sedimentologic, paleoecologic, and evolutionary implications. Palaios, 19: 543550.2.0.CO;2>CrossRefGoogle Scholar
Bergquist, P. R. 1965. The sponges of the Palau Islands, Pt. 1. Pacific Science, 19:123204.Google Scholar
Bromley, R. G. 1970. Borings as trace fossils and Entobia cretacea Portlock, as an example, p. 4990. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils. Geological Journal Special Issue, No. 3.Google Scholar
Bromley, R. G. 2004. A stratigraphy of marine bioerosion, p. 455479. In McIlroy, D. (ed.), The Application of Ichnology to Palaeoenvironmental and Stratigraphical Analysis. Geological Society, London, Special Publications, 228.Google Scholar
Bromley, R. G., and D'Alessandro, A. 1984. The ichnogenus Entobia from the Miocene, Pliocene and Pleistocene of southern Italy. Rivisita Italiana di Paleontologia et Stratigraphie, 90:227296.Google Scholar
Bromley, R. G., and D'Alessandro, A. 1989. Ichnological study of shallow marine endolithic sponges from the Italian coast. Rivisita Italiana di Paleontologia et Stratigraphie, 89:283309.Google Scholar
Bronn, H. G. 1837–1838. Lethaea geognostica, 2: Das Kreide und Molassen–Gebirge. Stuttgart, p. 5451350.Google Scholar
Chamberlain, A. K., and Warme, J. E. 1996. Devonian sequences and sequence boundaries, Timpahute Range, Nevada, p. 6384. In Longman, M. W. and Sonnenfeld, M. D. (eds.), Paleozoic System of the Rocky Mountain Region. Rocky Mountain Section, SEPM.Google Scholar
Clarke, J. M. 1908. The beginnings of dependent life. New York State Museum Bulletin, 121:146196.Google Scholar
Clarke, J. M. 1921. Organic dependence and disease: Their origin and significance. New York State Museum Bulletin, 221–222:1113.Google Scholar
Cobb, W. R. 1969. Penetration of calcium carbonate substrates by the boring sponge, Cliona . American Zoologist, 9:783790.Google Scholar
de Laubenfels, M. W. 1936. A discussion of the sponge fauna of the Dry Tortugas in particular, and the West Indies in general, with material for a revision of the families and orders of the Porifera. Carnegie Institution of Washington Publications 467, Papers of the Tortugas Laboratory, 30, 225 p.Google Scholar
de Laubenfels, M. W. 1955. Porifera, p. E21E112. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology. Pt. E. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Dunn, M. J. 1979. Depositional history and paleoecology of an Upper Devonian (Frasnian) bioherm, Mount Irish, Nevada. Unpublished , , 133 p.Google Scholar
Ekdale, A. A., and Bromley, R. G. 2001. Bioerosional innovation for living in carbonate hardgrounds in the Early Ordovician of Sweden. Lethaia, 34:112.CrossRefGoogle Scholar
Ekdale, A. A., Benner, J. S., Bromley, R. G., and De Gibert, J. M. 2002. Bioerosion of Lower Ordovician hardgrounds in southern Scandinavia and western North America. Acta Geologica Hispanica, 37:913.Google Scholar
Eliuk, L. S., and Pemberton, S. G. 2003. Importance of bioerosion in some fossil reefs: Examples from the mid-Mesozoic East Coast continental margin offshore and the mid-Paleozoic Western Canadian Sedimentary Basin western outcrop contrasted. GAC-MAC Joint Annual Meeting, Vancouver, Abstracts, 28.Google Scholar
Fenton, C. L., and Fenton, M. A. 1932. Boring sponges in the Devonian of Iowa. American Midland Naturalist, 13:4254.Google Scholar
Fischbuch, N. R. 1968. Stratigraphy, Devonian Swan Hills reef complexes of central Alberta. Bulletin of Canadian Petroleum Geology, 16: 446587.Google Scholar
Fischer, M. P. 1868. Recherches sur les éponges perforantes fossils. Nouvelles Archives-Musée National D'Histoire Naturelle (Paris), 4:117173.Google Scholar
Fraser, N. M., Bottjer, D. J., and Fischer, A. G. 2004. Dissecting “Lithiotis“ bivalves: Implications for the Early Jurassic reef eclipse. Palaios, 19:5167.Google Scholar
Fürsich, F. T., Palmer, T. J., and Goodyear, K. L. 1994. Growth and disintegration of bivalve-dominated patch reefs in the Upper Jurassic of southern England. Palaeontology, 37:131171.Google Scholar
Goldfuss, G. A. 1826. Petrafacta Germaniae, 1. Arnz and Company, Düsseldorf, 252 p.Google Scholar
Goreau, T. F., and Hartman, W. D. 1963. Boring sponges as controlling factors in the formation and maintenance of coral reefs, p. 2554. In Sognnaes, R. F. (ed.), Mechanisms of Hard Tissue Destruction. American Association for the Advancement of Science Publication Number 75.Google Scholar
Häntzschel, W. 1975. Miscellanea, Supplement 1: Trace Fossils and Problematica, p. 1269. In Teichert, C. (ed.), Treatise on Invertebrate Paleontology. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Kershaw, S. 1980. Cavities and cryptic faunas beneath non-reef stromatoporoids. Lethaia, 13:327338.CrossRefGoogle Scholar
Kobluk, D. R., and Nemcsok, S. 1982. The macroboring ichnofossil Trypanites in colonies of the Middle Ordovician bryozoan Prasopora: Population behaviour and reaction to environmental influences. Canadian Journal of Earth Sciences, 19:679688.Google Scholar
Leavitt, E. M. 1968. Petrology, palaeontology, Carson Creek North reef complex, Alberta. Bulletin of Canadian Petroleum Geology, 16:298413.Google Scholar
Lebold, J. G. 2000. Quantitative analysis of epizoans on Silurian stromatoporoids within the Brassfield Formation. Journal of Paleontology, 74:394403.2.0.CO;2>CrossRefGoogle Scholar
Leymerie, M. A. 1842. Suite de mémoire sur le terrain Crétacé du département de l'Aube. Memoir de la Société géologique de France, 5:134.Google Scholar
Lindström, M. 1979. Probable sponge borings in Lower Ordovician limestone of Sweden. Geology, 7:152155.2.0.CO;2>CrossRefGoogle Scholar
Mägdefrau, K. 1932. Über einige Bohrgänge aus dem Unteren Muschelkalk von Jena. Paläontologische Zeitschrift, 14:150160.Google Scholar
Marek, J. 1982. Runia runica ichnogen. et ichnosp. nov., a new sponge boring from the Silurian of Bohemia. Acta Universitatis Carolinae-Geologica, 4:401408.Google Scholar
McCoy, F. 1851-1855. A systematic description of the British Palaeozoic fossils in the Geological Museum of the University of Cambridge, p. 185406 (1852). In Sedgwick, A. (ed.), A Synopsis of the Classification of the British Palaeozoic Rocks. J. W. Parker, London, Cambridge.Google Scholar
Mikuláš, R. 1993. Early Cretaceous borings from Štramberk (Czechoslovakia). Časopsis pro mineralogii a geologii, 37:297312.Google Scholar
Mikuláš, R. 1994. Sponge borings in stromatoporoids and tabulate corals from the Devonian of Moravia (Czech Republic). Bulletin of the Geological Society, Prague, 69:6973.Google Scholar
Morris, J. 1851. Palaeontological notes. Annals and Magazine of Natural History, series 2, 8:8590.CrossRefGoogle Scholar
Neumann, A. C. 1966. Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa . Limnology and Oceanography, 11:92108.CrossRefGoogle Scholar
Nicholson, H. A. 1886. A monograph on the British Stromatoporoids, Pt. 1. Monograph of the Palaeontographical Society, 39:1130.Google Scholar
Nield, E. W. 1984. The boring of Silurian stromatoporoids—towards an understanding of larval behaviour in the Trypanites organism. Palaeogeography, Palaeoclimatology, Palaeoecology, 48:229243.CrossRefGoogle Scholar
Palmer, T. J., and Palmer, C. D. 1977. Faunal distribution and colonization strategy in a Middle Ordovician hardground community. Lethaia, 10:179199.Google Scholar
Parks, W. A. 1936. Devonian stromatoporoids of North America, Pt. 1. University of Toronto Geological Studies, 39:1125.Google Scholar
Perry, C. T., and Bertling, M. 2000. Spatial and temporal patterns of macroboring within Mesozoic and Cenozoic coral reef systems, p. 3350. In Insalaco, E., Skelton, P. W., and Palmer, T. J. (eds.), Carbonate Platform Systems: Components and Interactions. Geological Society, London, Special Publications Number 178.Google Scholar
Plewes, C. R. 1996. Ichnotaxonomic studies of Jurassic endoliths. Unpublished Ph.D. dissertation, University of Wales, Aberystwyth, 313 p.Google Scholar
Pleydell, S. M., and Jones, B. 1988. Boring of various faunal elements in the Oligocene-Miocene Bluff Formation of Grand Cayman, British West Indies. Journal of Paleontology, 62:348367.Google Scholar
Pomponi, S. A. 1977. Etching cells of boring sponges: An ultrastructural analysis. Proceedings of the Third International Coral Reef Symposium, 2:485490.Google Scholar
Pomponi, S. A. 1979. Cytochemical studies of acid phosphatase in etching cells of boring sponges. Journal of the Marine Biology Association, United Kingdom, 59:785789.Google Scholar
Portlock, J. E. 1843. Report on the Geology of the County of Londonderry and Parts of Tyrone and Fermanagh. Her Majesty's Stationery Office, Dublin, 748 p.Google Scholar
Reso, A. 1963. Composite columnar section of exposed Paleozoic and Cenozoic rocks in the Pahranagat Range, Lincoln County, Nevada. Geological Society of America Bulletin, 74:901918.Google Scholar
Rützler, K., and Rieger, G. 1973. Sponge burrowing: Fine structure of Cliona lampa penetrating calcareous substrate. Marine Biology, 21: 144162.Google Scholar
Sandberg, C. A., and Warme, J. E. 1993. Conodont dating, biofacies, and catastrophic origin of Late Devonian (early Frasnian) Alamo Breccia, southern Nevada. Geological Society of America Abstracts with Program, 25:77.Google Scholar
Sandberg, C. A., Morrow, J. R., and Warme, J. E. 1997. Late Devonian Kellwasser events and major eustatic events, eastern Great Basin, Nevada and Utah. Brigham Young University Geology Studies, 42:129160.Google Scholar
Segars, M. T., and Liddell, W. D. 1988. Microhabitat analyses of Silurian stromatoporoids as substrata for epibionts. Palaios, 3:391403.Google Scholar
Solle, G. 1938. Die ersten Bohr-Spongien im europäischen Devon und einige andere Spuren. Senckenbergiana Lethaea, 20:154178.Google Scholar
Steininger, J. 1831. Bemerkungen über die Versteinerungen, welche in dem Uebergangs-Kalkgebirge der Eifel gefunden werden. Eine Beilage zum Gymnasial-Program zu Trier, Trier, p. 144.Google Scholar
Tapanila, L., and Copper, P. 2002. Endolithic trace fossils in Ordovician-Silurian corals and stromatoporoids, Anticosti Island, eastern Canada. Acta Geologica Hispanica, 37:1520.Google Scholar
Tapanila, L., Copper, P., and Edinger, E. 2004. Environmental and substrate control on Paleozoic bioerosion in corals and stromatoporoids, Anticosti Island, eastern Canada. Palaios, 19:292306.Google Scholar
Taylor, P. D., and Wilson, M. A. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth Science Reviews, 62:1103.CrossRefGoogle Scholar
Warme, J. E., and Kuehner, H.-C. 1998. Anatomy of an anomaly: The Devonian catastrophic Alamo Impact Breccia of southern Nevada. International Geology Review, 40:189216.CrossRefGoogle Scholar
Warme, J. E., and Sandberg, C. A. 1995. The catastrophic Alamo breccia of southern Nevada: Record of a Late Devonian extraterrestrial impact. Courier Forschungsintitut Senkenberg, 188:3157.Google Scholar
Weidlich, O. 1996. Bioerosion in Late Permian Rugosa from reefal blocks (Hawasina Complex, Oman Mountains): Implications for reef degradation. Facies, 35:133142.Google Scholar
Wilson, M. A., and Palmer, T. J. 1988. Nomenclature of a bivalve boring from the Upper Ordovician of the midwestern United States. Journal of Paleontology, 62:306308.Google Scholar
Wilson, M. A., and Palmer, T. J. 1998. The earliest Gastrochaenolites (Early Pennsylvanian, Arkansas, USA): An Upper Paleozoic bivalve boring? Journal of Paleontology, 72:769772.Google Scholar