Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-dxfhg Total loading time: 0.263 Render date: 2021-03-08T10:29:31.572Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Fossil insect eggs and ovipositional damage on bennettitalean leaf cuticles from the Carnian (Upper Triassic) of Austria

Published online by Cambridge University Press:  14 July 2015

Christian Pott
Affiliation:
1Forschungsstelle für Paläobotanik am Geologisch-Paläontologischen Institut, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 57, D-48143 Münster, Germany, <christian.pott@uni-muenster.de>, <kerp@uni-muenster.de>
Conrad C. Labandeira
Affiliation:
2National Museum of Natural History, Department of Paleobiology, MRC-121, P.O. Box 37012, Washington, D.C. 20013-7012, <labandec@si.edu>
Michael Krings
Affiliation:
3Bayerische Staatssammlung für Paläontologie und Geologie und GeoBio-CenterLMU, Richard-Wagner-Straße 10, D-80333 Munich, Germany, <m.krings@lrz.uni-muenchen.de>
Hans Kerp
Affiliation:
1Forschungsstelle für Paläobotanik am Geologisch-Paläontologischen Institut, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 57, D-48143 Münster, Germany, <christian.pott@uni-muenster.de>, <kerp@uni-muenster.de>

Abstract

Two types of evidence for insect ovipositional activity (i.e., actual egg chorions and ovipositional damage) occur on Nilssoniopteris (bennettitalean foliage) leaf cuticles from the Carnian of Austria and provide a rare direct insight into insect egg morphology and oviposition in the Late Triassic. the egg chorions have exclusively been found on N. haidingeri leaves, where they are attached to the outer surface of the abaxial cuticle; one specimen suggests that the eggs were arranged in circles. It is impossible at present to determine the affinities of the eggs; possible producers may be beetles, dragonflies, sawflies, or other allied basal Hymenoptera. Ovipositional damage occurs on N. angustior leaves in the form of lenticular egg impressions surrounded by a narrow, elevated margin. the impressions are visible on the ad- and abaxial cuticle, and coincide when both cuticles are superimposed, which indicates that the eggs producing these impressions were injected into the interior of the leaf. Producers of eggs that may have caused these damages are perhaps dragonflies or damselflies. the restricted occurrence of the two types of ovipositional activity suggests that some kind of host specificity existed, perhaps related to specific preferences in larval diet.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below.

References

Anderson, J. M., Kohring, R., and Schlüter, T. 1998. Was insect biodiversity in the Triassic akin to today?—A case study from the Molteno Formation (South Africa). Entomología Generalis, 23(1/2):1526.CrossRefGoogle Scholar
Ash, S. 1997. Evidence of arthropod-plant interactions in the Upper Triassic of the Southwestern of the United States. Lethaia, 29:237248.CrossRefGoogle Scholar
Ash, S. 1999. An Upper Triassic Sphenopteris showing evidence of insect predation from Petrified Forest National Park, Arizona. International Journal of Plant Science, 160(1):208215.CrossRefGoogle Scholar
Ash, S. 2005. A new Upper Triassic flora and associated invertebrate fossils from the basal beds of the Chinle Formation, near Cameron, Arizona. PaleoBios, 25(1):1734.Google Scholar
Béthoux, O., Galtier, J., and Nel, A. 2004. Earliest evidence of insect endophytic oviposition. Palaios, 19:408413.2.0.CO;2>CrossRefGoogle Scholar
Béthoux, O., Papier, F., and Nel, A. 2005. The Triassic radiation of the entomofauna. Comptes Rendus Palevol, 4:609621.CrossRefGoogle Scholar
Blank, S. M. 2002. Biosystematics of the extant Xyelidae with particular emphasis on the Old World taxa: (Insecta: Hymenoptera). Ph.D. dissertation, Freie Universität, Berlin, 200 p.Google Scholar
Blank, S. M., Shinohara, A., and Byun, B.-K. 2005. The East Asian Xyela species (Hymenoptera: Xyelidae) associated with Japanese Red Pine (Pinus densiflora; Pinaceae) and their distribution history. Insect Systematics & Evolution, 36:259278.CrossRefGoogle Scholar
Brongniart, A. 1828. Prodrome d'une histoire des végétaux fossiles. Levrault, Paris, VIII+ 223 p.Google Scholar
Burdick, D. 1961. A taxonomic and biological study of the genus Xyela Dalman in North America. University of California Publications in Entomology, 17:285355.Google Scholar
Carpenter, F. M. 1992. Arthropoda 4—Superclass Hexapoda, p. 279337. In Kaesler, R. L. (ed.), Treatise on Invertebrate Palaeontology. The Geological Society of America and the University of Kansas, Boulder, Colorado.Google Scholar
Corbet, P. S. 2004. Dragonflies: Behaviour and Ecology of Odonata. Cornell University Press, Ithaca, XXXIV+ 829 p.Google Scholar
Crowson, R. A. 1962. Observations on the beetle family Cupedidae, with descriptions of two new fossil forms and a key to the recent genera. The Annals and Magazine of Natural History, Zoology, Botany and Geology (13. Series), 5:147157.Google Scholar
Crowson, R. A. 1981. The Biology of the Coleoptera. Academic Press, London, XII+ 802 p.Google Scholar
Delevoryas, T. 1968. Investigations of North American cycadeoids: Structure, ontogeny and phylogenetic considerations of cones of Cycadeoidea. Palaeontographica Abt. B, 121(4-6):122133.Google Scholar
Dobruskina, I. A. 1989. The alpine Lunz-Flora—A standard flora for the carnian stage of the Triassic. International Geological Review, 31:12091215.CrossRefGoogle Scholar
Dobruskina, I. A. 1998. Lunz flora in the Austrian Alps—A standard for Carnian floras. Palaeogeography, Palaeoclimatology, Palaeoecology, 143:307345.CrossRefGoogle Scholar
Fraser, N. C., Grimaldi, D., Olson, P. E., and Axsmith, B. J. 1996. A Triassic Lagerstätte from eastern North America. Nature, 380:615619.CrossRefGoogle Scholar
Gradstein, F., Ogg, J., and Smith, A. 2004. A Geologic Time Scale. Cambridge University Press, Cambridge, XX+589 p.Google Scholar
Gratshev, V. G. and Zherikhin, V. V. 2003. The fossil record of weevils and related beetle families (Coleoptera, Curculionoidea). Acta zoologica cracoviensia, 46:129138.Google Scholar
Grauvogel-Stamm, L. and Kelber, K.-P. 1996. Plant-insect interactions and coevolution during the Triassic in Western Europe. Paleontologia Lombarda, Nuova Serie, 5:523.Google Scholar
Grimaldi, D. and Engel, M. S. 2005. Evolution of the Insects. Cambridge University Press, Cambridge, XVI+755 p.Google Scholar
Hellmund, M. and Hellmund, W. 1996. Zum Fortpflanzungsmodus fossiler Kleinlibellen (Insecta, Odonata, Zygoptera). Paläontologische Zeitschrift, 70(1/2):153170.CrossRefGoogle Scholar
Hinton, H. E. 1981. Biology of the Insect Eggs (Volumes 1-3). Pergamon, Oxford, XXIV + 1125 p.Google Scholar
Hornung, T. 2006. Die Reingrabener Wende in der Halleiner Salzbergfazies (distale Hallstattfazies)—biostratigraphische Daten. Geo. Alp, 3:921.Google Scholar
Hornung, T. and Brandner, R. 2005. Biochronostratigraphy of the Reingraben turnover (Hallstatt facies belt): Local black shale events controlled by regional tectonics, climatic change and plate tectonics. Facies, 51:460479.CrossRefGoogle Scholar
Tan, Jingjing, Ren, Dong, and Shih, Chungkun. 2006. First record of fossil Priacma (Coleoptera: Archostemata: Cupedidae) from the Jehol Biota of western Liaoning, China. Zootaxa, 1326:5568.Google Scholar
Kelber, K.-P. 1998. Phytostratigraphische Aspekte der Makrofloren des süddeutschen Keupers. Documenta naturae, 117:89115.Google Scholar
Kelber, K.-P. and Geyer, G. 1989. Lebensspuren von Insekten an Pflanzen des Unteren Keupers. Courier Forschungs-Institut Senckenberg, 109:165174.Google Scholar
Kerp, H. 1990. The study of fossil gymnosperms by means of cuticular analysis. Palaios, 5:548569.CrossRefGoogle Scholar
Kerp, H. and Krings, M. 1999. Light microscopy of cuticules, p. 5256. In Jones, T., Fossil Plants and Spores: Modern Techniques. Geological Society, London.Google Scholar
Kirchner, M. and van Konijnenburg-van Cittert, J. H. A. 1994. Schmeissneria microstachys (Presl 1833) Kirchner et Van Konijnenburgvan Cittert comb. nov. and Karkenia hauptmannii Kirchner et Van Konijnenburg-van Cittert sp. nov., plants with ginkgoalean affinities from the Liassic of Germany. Review of Palaeobotany and Palynology, 83:199215.CrossRefGoogle Scholar
Konow, F. W. 1897. Ueber die Xyelini (Tenthredinidarum tribus). Entomologische Nachrichten, 23:5558.Google Scholar
Krings, M., Kellogg, D. W., Kerp, H., and Taylor, T. N. 2003. Trichomes of the Seed Fern Blanzyopteris praedentata: Implications for plant-insect interactions in the Late Carboniferous. Botanical Journal of the Linnean Society, 141:133149.CrossRefGoogle Scholar
Krasser, F. 1909. Die Diagnosen der von Dionysius Stur in der obertriadischen Flora der Lunzerschichten als Marattiaceenarten unterschiedenen Farne. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Wien, Abt. 1, 118:1343.Google Scholar
Labandeira, C. C. 1997. Insect mouthparts: ascertaining the paleobiology of insect feeding strategies. Annual Review of Ecology and Systematics, 28:153193.CrossRefGoogle Scholar
Labandeira, C. C. 2002. The history of associations between plants and animals, p. 26261. In Herrera, C. M. and Pellmyr, O. (eds.), Plant-Animal Interactions: An Evolutionary Approach. Blackwell Science, London.Google Scholar
Labandeira, C. C. 2005. Insect leaf-mining in Late Triassic gymnospermous floras from the Molteno Formation of South Africa. Salt Lake City Annual Meeting (October 16-19, 2005). Geological Society of America Abstracts with Programs, 37(7):15.Google Scholar
Labandeira, C. C. 2006. Silurian to Triassic plant and insect clades and their associations: new data, a review, and interpretations. Arthropod Systematics & Phylogeny, 64:5394.Google Scholar
Labandeira, C. C. and Beall, B. S. 1990. Arthropod terrestriality, p. 214256. In Mikulic, D. G. (ed.), Arthropod Paleobiology (Short Courses in Paleontology, Number 3). University of Tennessee Press (for the Paleontological Society), Knoxville, TN.Google Scholar
Labandeira, C. C. and Sepkoski, J. J. 1993. Insect diversity in the fossil record. Science, 261:310315.CrossRefGoogle ScholarPubMed
Lawrence, J. F. and Newman, A. F. 1982. Evolution and classification of beetles. Annual Review of Ecology and Systematics, 13:261290.CrossRefGoogle Scholar
Leach, W. E. 1815. Entomology, p. 57172. In Brewster, D. (ed.), The Edinburgh Encyclopaedia—Volume 9. William Blackburn, Edinburgh.Google Scholar
Linnaeus, C. 1753. Species plantarum, exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. Volume 1. Laurentii Salvii, Stockholm, XV+784 p.Google Scholar
Linnaeus, C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Edicio decima, reformata. Laurentii Salvii, Stockholm, 824 p.Google Scholar
Matushkina, N. A. and Gorb, S. N. 2000. Patterns of endophytic egg-sets in damselflies (Odonata, Zygoptera). Vestnik zoologii Supplement, 14(2):152159. (In Russian)Google Scholar
Nathorst, A. G. 1909. Über die Gattung Nilssonia Brongn. Kungliga Svenska Vetenskapsakademiens Handlingar, 43:337.Google Scholar
Peeters, P. J. 2002. Correlations between leaf structural traits and the densities of herbivorous insect guilds. Biological Journal of the Linnean Society, 77:4365.CrossRefGoogle Scholar
Ponomarenko, A. G. 1977. Suborder Adephaga, p. 17104. In Arnold'di, L. V., Zherikhin, V. V., Nikritin, L. M., and Ponomarenko, A. G. (eds.), Mezozoiskie Zhestkokrylye. Akademia Nauk SSSR, Trudy Paleontologicheskogo Instituta 161. Nauka Publishers, Moscow.Google Scholar
Ponomarenko, A. G. 1992. Suborder Adephaga, p. 19142. In Arnold'di, L. V., Zherikhin, V. V., Nikritin, L. M., and Ponomarenko, A. G. (ed.), Mesozoic Coleoptera. Smithsonian Institution Libraries, Washington, D.C.(English translation of Ponomarenko, 1977)Google Scholar
Ponomarenko, A. G. 2003. Palaeontological discoveries of beetles (http://www.zin.ru/animalia/coleoptera/eng/syst4.htm), last hit: 2 November 2007.Google Scholar
Pott, C., Kerp, H., and Krings, M. 2007a. Pseudoctenis cornelii nov. spec. (cycadalean foliage) from the Carnian (Upper Triassic) of Lunz, Lower Austria. Annalen des Naturhistorischen Museums Wien, 109A:117.Google Scholar
Pott, C., Kerp, H., and Krings, M. 2007b. Morphology and epidermal anatomy of Nilssonia (cycadalean foliage) from the Upper Triassic of Lunz (Lower Austria). Review of Palaeobotany and Palynology, 143:197217.CrossRefGoogle Scholar
Pott, C., Krings, M., and Kerp, H. 2007. The first record of Nilssoniopteris (fossil Gymnospermophyta, Bennettitales) from the Carnian (Upper Triassic) of Lunz, Lower Austria. Palaeontology, 50, 12991318.Google Scholar
Pott, C., van Konijnenburg-van Cittert, J. H. A., Kerp, H., and Krings, M. 2007. Revision of the Pterophyllum species (Cycadophytina: Bennettitales) in the Carnian (Late Triassic) flora from Lunz, Lower Austria. Review of Palaeobotany and Palynology, 147:327.CrossRefGoogle Scholar
Rasnitsyn, A. P. 1969. Origin and evolution of the lower Hymenoptera. Trudy Paleontologicheskii Instituta (Akademiya Nauk SSSR), 123:1196. (In Russian)Google Scholar
Rasnitsyn, A. P. 1988. An outline of evolution of the hymenopterous insects. Oriental Insects, 22:115145.CrossRefGoogle Scholar
Rasnitsyn, A. R. 2000. Testing cladograms by fossil record: The ghost range test. Contributions to Zoology, 69(4):251258.Google Scholar
Rothwell, G. W. and Stockey, R. A. 2002. Anatomically preserved Cycadeoidea (Cycadeoidaceae), with a reevaluation of systematic characters for the seed cones of Bennettitales. American Journal of Botany, 89:14471458.CrossRefGoogle Scholar
Sahlén, G. 1994. Ultrastructure of the eggshell of Aeshna juncea (L.) (Odonata, Aeshnidae). International Journal of Insect Morphology and Embryology, 23(4):345354.CrossRefGoogle Scholar
Sahlén, G. 1995. Eggshell ultrastructure in Onychogomphus forcipatus unguiculatus (van der Linden) (Odonata, Gomphidae). International Journal of Insect Morphology and Embryology, 24(3):281286.CrossRefGoogle Scholar
Schiemenz, H. 1957. Die Libellen unserer Heimat. Franckh'sche Verlagshandlung, Stuttgart, 154 p.Google Scholar
Schulmeister, S. 2002. Simultaneous analysis of the basal lineages of Hymenoptera (Insecta) using sensitivity analysis. Cladistics, 18:455484.CrossRefGoogle Scholar
Schulmeister, S. 2003a. Review of morphological evidence on the phylogeny of basal Hymenoptera (Insecta), with a discussion of the ordering of characters. Biological Journal of the Linnean Society, 79:209243.CrossRefGoogle Scholar
Schulmeister, S. 2003b. Simultaneous analysis of basal Hymenoptera (Insecta): Introducing robust-choice sensitivity analysis. Biological Journal of the Linnean Society, 79:245275.CrossRefGoogle Scholar
Scott, A. C., Anderson, J. M., and Anderson, H. M. 2004. Evidence of plant-insect interactions in the Upper Triassic Molteno Formation of South Africa. Journal of the Geological Society of London, 161:401410.CrossRefGoogle Scholar
Sitte, P., Ziegler, H., Ehrendorfer, F., and Bresinsky, A. 1998. Strasburger Lehrbuch der Botanik. Fischer, Stuttgart, 1007 p.Google Scholar
Sternberg, K. M. G. von. 1820-1838. Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt. Fleischer, Spurny, Leipzig and Prague, Volume I, 144+XLII p., Volume II, 80 p.Google Scholar
Stockey, R. A. and Rothwell, G. W. 2003. Anatomically preserved Williamsonia (Williamsoniaceae): Evidence for bennettitalean reproduction in the Late Cretaceous of Western North America. International Journal of Plant Science, 164(2):251262.CrossRefGoogle Scholar
Szujecki, A. 1966. Notes on the appearance and biology of eggs of several Staphylinidae (Coleoptera) species. Bulletin de l'Académie Polonaise des Sciences, Cl. II, 14(3):169175.Google Scholar
Van Konijnenburg-van Cittert, J. H. A. and Schmeissner, S. 1999. Fossil insect eggs on Lower Jurassic plant remains from Bavaria (Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 152:215223.CrossRefGoogle Scholar
Wesenberg-Lund, C. 1913. Fortpflanzungsverhältnisse: Paarung und Eiablage der Süßwasserinsekten. Fortschritte der naturwissenschaftlichen Forschung, 8:161286.Google Scholar
Wesenberg-Lund, C. 1943. Biologie der Süßwasserinsekten. Gyldendalske Boghandel, Copenhagen, and Springer, Berlin, VIII+682 p.CrossRefGoogle Scholar
Wieland, G. R. 1916. American Fossil Cycads, Volume II—Taxonomy. Carnegie Institution, Washington, VII + 277p., 58 pls.Google Scholar
Zherikhin, V. V. and Gratshev, V. G. 1995. A comparative study of the hind wing venation of the superfamily Curculionoidea with phylogenetic implicatons, p. 634777. In Pakaluk, J. and Slipinski, S. A. (eds.), Biology, Phylogeny, and Classification of Coleoptera. Papers celebrating 80th Birthday of Roy A. Crowson, Volume 2, Muzeum i Instytut Zoologii PAN, Warszawa.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 8th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fossil insect eggs and ovipositional damage on bennettitalean leaf cuticles from the Carnian (Upper Triassic) of Austria
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Fossil insect eggs and ovipositional damage on bennettitalean leaf cuticles from the Carnian (Upper Triassic) of Austria
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Fossil insect eggs and ovipositional damage on bennettitalean leaf cuticles from the Carnian (Upper Triassic) of Austria
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *