Skip to main content Accessibility help

Vitamin D-rich marine Inuit diet and markers of inflammation – a population-based survey in Greenland

  • L. K. Schæbel (a1) (a2) (a3), E. C. Bonefeld-Jørgensen (a1), P. Laurberg (a3), H. Vestergaard (a4) and S. Andersen (a2) (a5) (a6)...


The traditional Inuit diet in Greenland consists mainly of fish and marine mammals, rich in vitamin D. Vitamin D has anti-inflammatory capacity but markers of inflammation have been found to be high in Inuit living on a marine diet. Yet, the effect of vitamin D on inflammation in Inuit remains unsettled. This led us to investigate the association between vitamin D and markers of inflammation in a population with a high intake of a marine diet. We studied 535 Inuit and non-Inuit living in West and East Greenland. Information concerning dietary habits was obtained by interview-based FFQ. Blood samples were drawn for analysis of 25-hydroxyvitamin D, high-sensitivity C-reactive protein (hsCRP) and chitinase-3-like protein 1(YKL-40). Participants were divided into three groups based on degree of intake of the traditional Inuit diet. The diet groups (Inuit diet/mixed diet/imported foods) were associated with vitamin D levels in serum (74·2, 69·8 and 52·9 nm; P < 0·001), hsCRP (1·6, 1·4 and 1·3 mg/l; P = 0·002) and YKL-40 (130, 95 and 61 ng/ml; P < 0·001), respectively. YKL-40 level decreased with rising vitamin D level in Inuit (Inuit diet P = 0·002; mixed diet P = 0·011). YKL-40 was lower in groups with higher vitamin D levels after adjusting for other factors known to influence inflammation (P < 0·001). This was not seen for hsCRP. In conclusion, vitamin D and markers of inflammation vary in parallel with the intake of the marine Inuit diet. Vitamin D levels were inversely associated with YKL-40 levels, but no association with hsCRP was found. The hypothesised anti-inflammatory effect of vitamin D was not supported. Other factors in the marine diet may be speculated to influence inflammation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Vitamin D-rich marine Inuit diet and markers of inflammation – a population-based survey in Greenland
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Vitamin D-rich marine Inuit diet and markers of inflammation – a population-based survey in Greenland
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Vitamin D-rich marine Inuit diet and markers of inflammation – a population-based survey in Greenland
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited

Corresponding author

* Corresponding author: Dr L. K. Schæbel, email


Hide All
1. Lopez, AD, Mathers, CD, Ezzati, M, et al. (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367, 17471757.
2. Hansson, GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352, 16851695.
3. Rathcke, CN & Vestergaard, H (2009) YKL-40 – an emerging biomarker in cardiovascular disease and diabetes. Cardiovasc Diabetol 8, 61.
4. Kucur, M, Isman, FK, Karadag, B, et al. (2007) Serum YKL-40 levels in patients with coronary artery disease. Coron Artery Dis 18, 391396.
5. Michelsen, AE, Rathcke, CN, Skjelland, M, et al. (2010) Increased YKL-40 expression in patients with carotid atherosclerosis. Atherosclerosis 211, 589595.
6. Zittermann, A, Schleithoff, SS & Koerfer, R (2005) Putting cardiovascular disease and vitamin D insufficiency into perspective. Br J Nutr 94, 483492.
7. Laird, E, McNulty, H, Ward, M, et al. (2014) Vitamin D deficiency is associated with inflammation in older Irish adults. J Clin Endocrinol Metab 99, 18071815.
8. Durup, D, Jørgensen, HL, Christensen, J, et al. (2015) A reverse J-shaped association between serum 25-hydroxyvitamin D and cardiovascular disease mortality – the CopD study. J Clin Endocrinol Metab 100, 23392346.
9. Brandenburg, VM, Vervloet, MG & Marx, N (2012) The role of vitamin D in cardiovascular disease: from present evidence to future perspectives. Atherosclerosis 225, 253263.
10. Kjaergaard, M, Andersen, S, Holten, M, et al. (2009) Low occurrence of ischemic heart disease among Inuit around 1963 suggested from ECG among 1851 East Greenland Inuit. Atherosclerosis 203, 599603.
11. Bang, HO, Dyerberg, J & Sinclair, HM (1980) The composition of the Eskimo food in north western Greenland. Am J Clin Nutr 33, 26572661.
12. Jorgensen, ME, Bjerregaard, P, Kjaergaard, JJ, et al. (2008) High prevalence of markers of coronary heart disease among Greenland Inuit. Atherosclerosis 196, 772778.
13. Andersen, S, Hvingel, B, Kleinschmidt, K, et al. (2005) Changes in iodine excretion in 50–69-y-old denizens of an Arctic society in transition and iodine excretion as a biomarker of the frequency of consumption of traditional Inuit foods. Am J Clin Nutr 81, 656663.
14. Dahl-Petersen, IK, Jorgensen, ME & Bjerregaard, P (2011) Physical activity patterns in Greenland: a country in transition. Scand J Public Health 39, 678686.
15. Andersen, S, Laurberg, P, Hvingel, B, et al. (2013) Vitamin D status in Greenland is influenced by diet and ethnicity: a population-based survey in an Arctic society in transition. Br J Nutr 109, 928935.
16. Schaebel, LH, Vestergaard, H, Laurberg, P, et al. (2013) Intake of traditional Inuit diet vary in parallel with inflammation as estimated from YKL-40 and hsCRP in Inuit and non-Inuit in Greenland. Atherosclerosis 228, 496501.
17. Pars, T, Osler, M & Bjerregaard, P (2001) Contemporary use of traditional and imported food among Greenlandic Inuit. Arctic 54, 2231.
18. Hojskov, CS, Heickendorff, L & Moller, HJ (2010) High-throughput liquid–liquid extraction and LCMSMS assay for determination of circulating 25(OH) vitamin D3 and D2 in the routine clinical laboratory. Clin Chim Acta 411, 114116.
19. Nojgaard, C, Johansen, JS, Bjerregaard, P, et al. (2015) Plasma YKL-40 in Inuit and Danes. Alcohol Alcohol 50, 1117.
20. Andersen, S, Jakobsen, A & Laurberg, P (2013) Vitamin D status in North Greenland is influenced by diet and season: indicators of dermal 25-hydroxy vitamin D production north of the Arctic Circle. Br J Nutr 110, 5057.
21. Rejnmark, L, Jorgensen, ME, Pedersen, MB, et al. (2004) Vitamin D insufficiency in Greenlanders on a westernized fare: ethnic differences in calcitropic hormones between Greenlanders and Danes. Calcif Tissue Int 74, 255263.
22. Nielsen, NO, Jorgensen, ME, Friis, H, et al. (2014) Decrease in vitamin D status in the Greenlandic adult population from 1987–2010. PLOS ONE 9, e112949.
23. Di Franco, M, Barchetta, I, Iannuccelli, C, et al. (2015) Hypovitaminosis D in recent onset rheumatoid arthritis is predictive of reduced response to treatment and increased disease activity: a 12 month follow-up study. BMC Musculoskelet Disord 16, 53.
24. Knekt, P, Laaksonen, M, Mattila, C, et al. (2008) Serum vitamin D and subsequent occurrence of type 2 diabetes. Epidemiology 19, 666671.
25. Jahnsen, J, Falch, JA, Mowinckel, P, et al. (2002) Vitamin D status, parathyroid hormone and bone mineral density in patients with inflammatory bowel disease. Scand J Gastroenterol 37, 192199.
26. Wang, TJ, Pencina, MJ, Booth, SL, et al. (2008) Vitamin D deficiency and risk of cardiovascular disease. Circulation 117, 503511.
27. Berry, DJ, Hesketh, K, Power, C, et al. (2011) Vitamin D status has a linear association with seasonal infections and lung function in British adults. Br J Nutr 106, 14331440.
28. De Vita, F, Lauretani, F, Bauer, J, et al. (2014) Relationship between vitamin D and inflammatory markers in older individuals. Age (Dordr) 36, 9694.
29. Asemi, Z, Samimi, M, Tabassi, Z, et al. (2013) Vitamin D supplementation affects serum high-sensitivity C-reactive protein, insulin resistance, and biomarkers of oxidative stress in pregnant women. J Nutr 143, 14321438.
30. Witham, MD, Dove, FJ, Khan, F, et al. (2013) Effects of vitamin D supplementation on markers of vascular function after myocardial infarction – a randomised controlled trial. Int J Cardiol 167, 745749.
31. Muldowney, S, Lucey, AJ, Hill, TR, et al. (2012) Incremental cholecalciferol supplementation up to 15 μg/d throughout winter at 51–55° N has no effect on biomarkers of cardiovascular risk in healthy young and older adults. J Nutr 142, 15191525.
32. Wood, AD, Secombes, KR, Thies, F, et al. (2012) Vitamin D3 supplementation has no effect on conventional cardiovascular risk factors: a parallel-group, double-blind, placebo-controlled RCT. J Clin Endocrinol Metab 97, 35573568.
33. Yiu, YF, Yiu, KH, Siu, CW, et al. (2013) Randomized controlled trial of vitamin D supplement on endothelial function in patients with type 2 diabetes. Atherosclerosis 227, 140146.
34. Wamberg, L, Kampmann, U, Stodkilde-Jorgensen, H, et al. (2013) Effects of vitamin D supplementation on body fat accumulation, inflammation, and metabolic risk factors in obese adults with low vitamin D levels – results from a randomized trial. Eur J Intern Med 24, 644649.
35. Deutch, B, Dyerberg, J, Pedersen, HS, et al. (2007) Traditional and modern Greenlandic food – dietary composition, nutrients and contaminants. Sci Total Environ 384, 106119.
36. Bjerregaard, P & Jeppesen, C (2010) Inuit dietary patterns in modern Greenland. Int J Circumpolar Health 69, 1324.
37. Bonefeld-Jorgensen, EC (2010) Biomonitoring in Greenland: human biomarkers of exposure and effects – a short review. Rural Remote Health 10, 1362.
38. Seabert, TA, Pal, S, Pinet, BM, et al. (2014) Elevated contaminants contrasted with potential benefits of omega-3 fatty acids in wild food consumers of two remote first nations communities in northern Ontario, Canada. PLOS ONE 9, e90351.
39. Grandjean, P, Andersen, EW, Budtz-Jorgensen, E, et al. (2012) Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. JAMA 307, 391397.
40. Kim, KS, Hong, NS, Jacobs, DR Jr, et al. (2012) Interaction between persistent organic pollutants and C-reactive protein in estimating insulin resistance among non-diabetic adults. J Prev Med Public Health 45, 6269.
41. Hennig, B, Hammock, BD, Slim, R, et al. (2002) PCB-induced oxidative stress in endothelial cells: modulation by nutrients. Int J Hyg Environ Health 205, 95102.
42. Hong, MY, Lumibao, J, Mistry, P, et al. (2015) Fish oil contaminated with persistent organic pollutants reduces antioxidant capacity and induces oxidative stress without affecting its capacity to lower lipid concentrations and systemic inflammation in rats. J Nutr 145, 939944.
43. Serra-Majem, L, Pfrimer, K, Doreste-Alonso, J, et al. (2009) Dietary assessment methods for intakes of iron, calcium, selenium, zinc and iodine. Br J Nutr 102, Suppl. 1, S38S55.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed