Skip to main content Accessibility help
×
Home

Relevance of dietary protein concentration and quality as risk factors for the formation of calcium oxalate stones in cats

  • Nadine Paßlack (a1), Hannes Burmeier (a1), Thomas Brenten (a2), Konrad Neumann (a3) and Jürgen Zentek (a1)...

Abstract

The role of dietary protein for the development of feline calcium oxalate (CaOx) uroliths has not been conclusively clarified. The present study evaluated the effects of a varying dietary protein concentration and quality on critical indices for the formation of CaOx uroliths. Three diets with a high protein quality (10–11 % greaves meal/diet) and a varying crude protein (CP) concentration (35, 44 and 57 % in DM) were compared. Additionally, the 57 % CP diet was compared with a fourth diet that had a similar CP concentration (55 % in DM), but a lower protein quality (34 % greaves meal/diet). The Ca and oxalate (Ox) concentrations were similar in all diets. A group of eight cats received the same diet at the same time. Each feeding period was divided into a 21 d adaptation period and a 7 d sampling period to collect urine. There were increases in urinary volume, urinary Ca concentrations, renal Ca and Ox excretion and urinary relative supersaturation (RSS) with CaOx with increasing dietary protein concentrations. Urinary pH ranged between 6·34 and 6·66 among all groups, with no unidirectional effect of dietary protein. Lower renal Ca excretion was observed when feeding the diet with the lower protein quality, however, the underlying mechanism needs further evaluation. In conclusion, although the observed higher urinary volume is beneficial, the increase in urinary Ca concentrations, renal Ca and Ox excretion and urinary RSS CaOx associated with a high-protein diet may be critical for the development of CaOx uroliths in cats.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Relevance of dietary protein concentration and quality as risk factors for the formation of calcium oxalate stones in cats
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Relevance of dietary protein concentration and quality as risk factors for the formation of calcium oxalate stones in cats
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Relevance of dietary protein concentration and quality as risk factors for the formation of calcium oxalate stones in cats
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution license .

Corresponding author

* Corresponding author: Dr Nadine Paßlack, fax +49 3083855938, email nadine.passlack@fu-berlin.de

References

Hide All
1. Nguyen, QV, Kalin, A, Drouve, U, et al. (2001) Sensitivity to meat protein intake and hyperoxaluria in idiopathic calcium stone formers. Kidney Int 59, 22732281.
2. Zentek, J & Schulz, A (2004) Urinary composition of cats is affected by the source of dietary protein. J Nutr 134, 2162S2165S.
3. Dijcker, JC, Hagen-Plantinga, EA & Hendriks, WH (2012) Changes in dietary macronutrient profile do not appear to affect endogenous urinary oxalate excretion in healthy adult cats. Vet J 194, 235239.
4. Masai, M, Ito, H & Kotake, T (1995) Effect of dietary intake on urinary oxalate excretion in calcium oxalate stone formers. Br J Urol 76, 692696.
5. Naya, Y, Ito, H, Masai, M, et al. (2000) Effect of dietary intake on urinary oxalate excretion in calcium oxalate stone formers in their forties. Eur Urol 37, 140144.
6. Dijcker, JC, Plantinga, EA, van Baal, J, et al. (2011) Influence of nutrition on feline calcium oxalate urolithiasis with emphasis on endogenous oxalate synthesis. Nutr Res Rev 24, 96110.
7. Hashimoto, M, Funaba, M, Abe, M, et al. (1995) Dietary protein levels affect water intake and urinary excretion of magnesium and phosphorus in laboratory cats. Exp Anim 44, 2935.
8. Funaba, M, Hashimoto, M, Yamanaka, C, et al. (1996) Effects of a high-protein diet on mineral metabolism and struvite activity product in clinically normal cats. Am J Vet Res 57, 17261732.
9. Hashimoto, M, Funaba, M, Abe, M, et al. (1996) Effect of chronic high protein intake on magnesium, calcium, and phosphorus balance in growing cats. Exp Anim 45, 6370.
10. Kerr, KR (2013) Companion Animals Symposium: dietary management of feline lower urinary tract symptoms. J Anim Sci 91, 29652975.
11. Kirk, CA, Ling, GV, Franti, CE, et al. (1995) Evaluation of factors associated with development of calcium oxalate urolithiasis in cats. J Am Vet Med Assoc 207, 14291434.
12. Osborne, CA, Lulich, JP, Thumchai, R, et al. (1995) Etiopathogenesis and therapy of feline calcium oxalate urolithiasis. In Proceedings of the 13th Annual ACVIM Forum, Orlando, FL, pp. 487–489. Lakewoood, CO: American College of Veterinary Internal Medicine (ACVIM).
13. Funaba, M, Yamate, T, Hashida, Y, et al. (2003) Effects of a high-protein diet versus dietary supplementation with ammonium chloride on struvite crystal formation in urine of clinically normal cats. Am J Vet Res 64, 10591064.
14. Funaba, M, Oka, Y, Kobayashi, S, et al. (2005) Evaluation of meat meal, chicken meal, and corn gluten meal as dietary sources of protein in dry cat food. Can J Vet Res 69, 299304.
15. Negri, AL, Spivacow, FR & Del Valle, EE (2013) Diet in the treatment of renal lithiasis. Pathophysiological basis. Medicina (B Aires) 73, 267271.
16. Zemel, MB, Schuette, SA, Hegsted, M, et al. (1981) Role of the sulfur-containing amino acids in protein-induced hypercalciuria in men. J Nutr 111, 545552.
17. Bihuniak, JD, Simpson, CA, Sullivan, RR, et al. (2013) Dietary protein-induced increases in urinary calcium are accompanied by similar increases in urinary nitrogen and urinary urea: a controlled clinical trial. J Acad Nutr Diet 113, 447451.
18. Sabry, ZI, Shadarevian, SB, Cowan, JW, et al. (1965) Relationship of dietary intake of sulphur amino-acids to urinary excretion of inorganic sulphate in man. Nature 206, 931933.
19. Ceglia, L, Harris, SS, Abrams, SA, et al. (2009) Potassium bicarbonate attenuates the urinary nitrogen excretion that accompanies an increase in dietary protein and may promote calcium absorption. J Clin Endocrinol Metab 94, 645653.
20. Maalouf, NM, Moe, OW, Adams-Huet, B, et al. (2011) Hypercalciuria associated with high dietary protein intake is not due to acid load. J Clin Endocrinol Metab 96, 37333740.
21. Kerstetter, JE, O'Brien, KO, Caseria, DM, et al. (2005) The impact of dietary protein on calcium absorption and kinetic measures of bone turnover in women. J Clin Endocrinol Metab 90, 2631.
22. Hunt, JR, Johnson, LK & Fariba Roughead, ZK (2009) Dietary protein and calcium interact to influence calcium retention: a controlled feeding study. Am J Clin Nutr 89, 13571365.
23. Piccoli, A, Calò, L, Modena, F, et al. (1991) Prostaglandins and renal response to protein loading in normal and glomerulonephritic kidneys: effect of indomethacin and dipyridamole. Curr Ther Res Clin Exp 49, 596609.
24. Calò, L, Cantaro, S, Marchini, F, et al. (1990) Is hydrochlorothiazide-induced hypocalciuria due to inhibition of prostaglandin E2 synthesis? Clin Sci 78, 321325.
25. Baggio, B (2004) Protein diet and hypercalciuria. Kidney Int 65, 1970; author reply 1970.
26. Laser Reutersward, A, Asp, NG & Bjork, I (1985) Protein digestibility of pigskin and bovine tendon in rats. J Food Technol 20, 745752.
27. Knight, J, Jiang, J, Assimos, DG, et al. (2006) Hydroxyproline ingestion and urinary oxalate and glycolate excretion. Kidney Int 70, 19291934.
28. Knight, J, Easter, LH, Neiberg, R, et al. (2009) Increased protein intake on controlled oxalate diets does not increase urinary oxalate excretion. Urol Res 37, 6368.
29. National Research Council (2006) Nutrient Requirements of Dogs and Cats. Washington, DC: The National Academies Press.
30. Paßlack, N, Brenten, T, Neumann, K, et al. (2014) Investigations on the effects of potassium chloride and potassium bicarbonate in the diet on the urinary pH and mineral excretion of adult cats. Br J Nutr 111, 785797.
31. Naumann, C & Bassler, C (2004) Die chemische Untersuchung von Futtermitteln 3. Aufl., 5. Ergänzungslieferung (Chemical Feed Analyses, Vol. 3). Darmstadt: VDLUFA-Verlag.
32. Passlack, N & Zentek, J (2013) Urinary calcium and oxalate excretion in healthy adult cats are not affected by increasing dietary calcium levels. PLOS ONE 8, e70530.
33. Gericke, S & Kurmies, B (1952) Colorimetrische Bestimmung der Phosphorsäure mit Vanadat-Molybdat (Colorimetric determination of phosphoric acid with vanadate molybdate). Fres Zeitsch Anal Chem 137, 1522.
34. Robertson, WG, Jones, JS, Heaton, MA, et al. (2002) Predicting the crystallization potential of urine from cats and dogs with respect to calcium oxalate and magnesium ammonium phosphate (struvite). J Nutr 132, 1637S1641S.
35. Lekcharoensuk, C, Osborne, CA, Lulich, JP, et al. (2001) Association between dietary factors and calcium oxalate and magnesium ammonium phosphate urolithiasis in cats. J Am Vet Med Assoc 219, 12281237.
36. Siener, R, Honow, R, Voss, S, et al. (2006) Oxalate content of cereals and cereal products. J Agric Food Chem 54, 30083011.
37. Massey, LK (2007) Food oxalate: factors affecting measurement, biological variation, and bioavailability. J Am Diet Assoc 107, 11911194.
38. Naya, Y, Ito, H, Masai, M, et al. (2002) Association of dietary fatty acids with urinary oxalate excretion in calcium oxalate stone-formers in their fourth decade. BJU Int 89, 842846.
39. Schmiedl, A, Schwille, PO, Bonucci, E, et al. (2000) Nephrocalcinosis and hyperlipidemia in rats fed a cholesterol- and fat-rich diet: association with hyperoxaluria, altered kidney and bone minerals, and renal tissue phospholipidcalcium interaction. Urol Res 28, 404415.
40. Baggio, B, Priante, G, Brunati, AM, et al. (1999) Specific modulatory effect of arachidonic acid on human red blood cell oxalate transport: clinical implications in calcium oxalate nephrolithiasis. J Am Soc Nephrol 10, S381S384.
41. Morozumi, M, Hossain, RZ, Yamakawa, K, et al. (2006) Gastrointestinal oxalic acid absorption in calcium-treated rats. Urol Res 34, 168172.
42. Hegsted, M, Schuette, SA, Zemel, MB, et al. (1981) Urinary calcium and calcium balance in young men as affected by level of protein and phosphorus intake. J Nutr 111, 553562.
43. Metz, JA, Anderson, JJ & Gallagher, PN Jr (1993) Intakes of calcium, phosphorus, and protein, and physical-activity level are related to radial bone mass in young adult women. Am J Clin Nutr 58, 537542.
44. Prola, L, Dobenecker, B, Mussa, PP, et al. (2010) Influence of cellulose fibre length on faecal quality, mineral excretion and nutrient digestibility in cat. J Anim Physiol Anim Nutr (Berl) 94, 362367.
45. Gralak, MA, Leontowicz, M, Morawiec, M, et al. (1996) Comparison of the influence of dietary fibre sources with different proportions of soluble and insoluble fibre on Ca, Mg, Fe, Zn, Mn and Cu apparent absorption in rats. Arch Tierernahr 49, 293299.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed