Skip to main content Accessibility help

Maternal supplementation of seaweed-derived polysaccharides improves intestinal health and immune status of suckling piglets

  • G. Heim (a1), J. V. O'Doherty (a1), C. J. O'Shea (a2), D. N. Doyle (a1), A. M. Egan (a1), K. Thornton (a2) and T. Sweeney (a2)...


The experiment investigated the effect of maternal dietary supplementation of seaweed-derived polysaccharides (SDP) (–SDP v. +SDP, n   20) from day 83 of gestation until weaning (day 28) on selected sow faeces and piglet digesta microbiota populations, piglet small-intestinal morphology, and intestinal nutrient transporter and inflammatory cytokine gene expression at birth, 48 h after birth and weaning. The effect of maternal dietary treatment on the piglet gene expression profile of inflammatory cytokines in the colon following a lipopolysaccharide (LPS) challenge was also investigated. Dietary SDP reduced sow faecal Enterobacteriaceae gene numbers at parturition. Small-intestinal morphology, nutrient transporter and cytokine gene expression in newborn piglets did not differ between maternal dietary treatments (P > 0·10). At 48 h after birth, sodium–glucose-linked transporter 1 gene expression was down-regulated in the ileum of piglets suckling the SDP-supplemented sows compared with those suckling the basal sows (P = 0·050). There was a SDP × LPS challenge interaction on IL-1 and IL-6 gene expression in the colon of piglets (P < 0·05). The gene expression of IL-1 and IL-6 was down-regulated in the LPS-challenged colon of piglets suckling the SDP sows compared with those suckling the basal sows (P < 0·05). However, there was no difference in IL-1 and IL-6 gene expression in the unchallenged colon between treatment groups. At weaning, piglets suckling the SDP-supplemented sows had increased villus height in the jejunum and ileum compared with those suckling the basal-fed sows (P < 0·05). In conclusion, maternal dietary SDP supplementation enhanced the immune response of suckling piglets and improved gut morphology, making them more immune competent to deal with post-weaning adversities.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Maternal supplementation of seaweed-derived polysaccharides improves intestinal health and immune status of suckling piglets
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Maternal supplementation of seaweed-derived polysaccharides improves intestinal health and immune status of suckling piglets
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Maternal supplementation of seaweed-derived polysaccharides improves intestinal health and immune status of suckling piglets
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

* Corresponding author: J. V. O'Doherty, fax +353 1 7161103, email


Hide All
1. Heim, G, Mellagi, APG, Bierhals, T, et al. (2011) Absorption of IgG via colostrum in biological piglets and adopted piglets after cross-fostering. Arq Bras Med Vet Zoot 63, 10731078.
2. Le Dividich, J, Rooke, JA & Herpin, P (2005) Nutritional and immunological importance of colostrum for the new-born pig. J Agric Sci 143, 469485.
3. Zhang, H, Malo, C & Buddington, RK (1997) Suckling induces rapid intestinal growth and changes in brush border digestive functions of newborn pigs. J Nutr 127, 418426.
4. Demecková, V, Kelly, D, Coutts, AG, et al. (2002) The effect of fermented liquid feeding on the faecal microbiology and colostrum quality of farrowing sows. Int J Food Microbiol 79, 8597.
5. Yao, K, Sun, Z, Liu, Z, et al. (2013) Development of the gastrointestinal tract in pigs. In Nutritional and Physiological Functions of Amino Acids in Pigs, pp. 318 [Blachier, F, Wu, G and Yin, Y, editors].Vienna: Springer Verlag.
6. Maxwell, CV & Carter, SD (2001) Feeding the weaned pig. In Swine Nutrition, 2nd ed., pp. 692715 [Lewis, AJ and Southern, LL, editors]. Boca Raton, FL: CRC Press.
7. Salmon, H (1999) The mammary gland and neonate mucosal immunity. Vet Immun Immunopathol 72, 143155.
8. Kostantinov, SR, Favier, CF, Zhu, WY, et al. (2004) Microbial diversity studies of the porcine gastrointestinal ecosystem during weaning transition. Anim Res 53, 317324.
9. Xu, RJ, Wang, F & Zhang, SH (2000) Postnatal adaptation of the gastrointestinal tract in neonatal pigs: a possible role of milk-borne growth factors. Livest Sci 66, 95107.
10. Rome, S, Barbot, L, Windsor, E, et al. (2002) The regionalization of PepT1, NBAT and EAAC1 transporters in the small intestine of rats are unchanged from birth to adulthood. J Nutr 132, 10091011.
11. Takanashi, N, Tomosada, Y, Villena, J, et al. (2013) Advanced application of bovine intestinal epithelial cell line for evaluating regulatory effect of lactobacilli against heat-killed enterotoxigenic Escherichia coli-mediated inflammation. BMC Microbiol 13, 54.
12. Cario, E, Brown, D, McKee, M, et al. (2002) Commensal-associated molecular patterns induce selective Toll-like receptor trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am J Pathol 160, 165173.
13. Dibner, JJ & Richards, JD (2005) Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci 84, 634643.
14. Leonard, SG, Sweeney, T, Bahar, B, et al. (2010) Effect of maternal fish oil and seaweed extract supplementation on colostrum and milk composition, humoral immune response, and performance of suckled piglets. J Anim Sci 88, 29882997.
15. Leonard, SG, Sweeney, T, Pierce, KM, et al. (2010) The effects of supplementing the diet of the sow with seaweed extracts and fish oil on aspects of gastrointestinal health and performance of the weaned piglet. Br J Nutr 105, 549560.
16. Leonard, SG, Sweeney, T, Bahar, B, et al. (2011) Effects of dietary seaweed extract supplementation in sows and post-weaned pigs on performance, intestinal morphology, intestinal microflora and immune status. Br J Nutr 106, 688699.
17. Leonard, SG, Sweeney, T, Bahar, B, et al. (2012) Effect of maternal seaweed extract supplementation on suckling piglet growth, humoral immunity, selected microflora, and immune response after an ex vivo lipopolysaccharide challenge. J Anim Sci 90, 505514.
18. Heim, G, Sweeney, T, O'Shea, CJ, et al. (2014) Effect of maternal supplementation with seaweed extracts on growth performance and aspects of gastrointestinal health of newly weaned piglets after challenge with enterotoxigenic Escherichia coli K88. Br J Nutr 112, 19551965.
19. McPherson, RL, Ji, F, Wu, G, et al. (2004) Growth and compositional changes of fetal tissues in pigs. J Anim Sci 82, 25342540.
20. Biensen, NJ, Wilson, ME & Ford, SP (1998) The impact of either a Meishan or Yorkshire uterus on Meishan or Yorkshire fetal and placental development to days 70, 90, and 110 of gestation. J Anim Sci 76, 21692176.
21. Lynch, MB, Sweeney, T, Callan, JJ, et al. (2009) The effect of dietary Laminaria-derived laminarin and fucoidan on nutrient digestibility, nitrogen utilisation, intestinal microflora and volatile fatty acid concentration in pigs. J Sci Food Agric 90, 430437.
22. National Research Council (2012) Nutrient Requirements of Swine, 11th ed. Washington, DC: National Academies Press.
23. Heim, G, Mellagi, APG, Bierhals, T, et al. (2012) Effects of cross-fostering within 24 h after birth on pre-weaning behaviour, growth performance and survival rate of biological and adopted piglets. Livest Sci 150, 121127.
24. Stamati, S, Alexopoulos, C, Siochu, A, et al. (2006) Probiosis in sows by administration of Bacillus toyoi spores during late pregnancy and lactation: effect on their health status/performance and on litter characteristics. Intern J Probiotics Prebiotics 1, 3340.
25. Heim, G, Walsh, AM, Sweeney, T, et al. (2014) Effect of seaweed derived laminarin and fucoidan, and zinc oxide on gut morphology, nutrient transporters, nutrient digestibility, growth performance and selected microbial populations in weaned pigs. Br J Nutr 111, 15771585.
26. Usov, AI, Smirnova, GP & Klochkova, NG (2001) Polysaccharides of algae: 55. Polysaccharide composition of several brown algae from Kamchatka. Russ J Bioorg Chem 27, 395399.
27. O'Shea, CJ, Sweeney, T, Bahar, B, et al. (2012) Indices of gastrointestinal fermentation and manure emissions of growing–finishing pigs as influenced through singular or combined consumption of Lactobacillus plantarum and inulin. J Anim Sci 90, 38483857.
28. Metzler-Zebeli, BU, Hooda, S, Pieper, R, et al. (2010) Nonstarch polysaccharides modulate bacterial microbiota, pathways for butyrate production, and abundance of pathogenic Escherichia coli in the pig gastrointestinal tract. Appl Environ Microbiol 76, 36923701.
29. Lee, C, Kim, J, Shin, SG, et al. (2006) Absolute and relative qPCR quantification of plasmid copy number in Escherichia coli . J Biotechnol 123, 273280.
30. Liu, P, Piao, XS, Thacker, PA, et al. (2010) Chito-oligosaccharide reduces diarrhea incidence and attenuates the immune response of weaned pigs challenged with Escherichia coli K88. J Anim Sci 88, 38713879.
31. Smith, AG, O'Doherty, JV, Reilly, P, et al. (2011) The effects of laminarin derived from Laminaria digitata on measurements of gut health: selected bacterial populations, intestinal fermentation, mucin gene expression and cytokine gene expression in the pig. Br J Nutr 105, 669677.
32. Ryan, MT, Collins, CB, O'Doherty, JV, et al. (2010) Selection of stable reference genes for quantitative real-time PCR in porcine gastrointestinal tissues. Livest Sci 133, 4244.
33. Vandesompele, J, De Preter, K, Pattyn, F, et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, research0034.1–research0034.11.
34. Statistical Analysis Systems Institute (1985) Statistical Analysis Systems, 6.12 ed. Cary, NC: SAS Institute, Inc.
35. Meredith, MJ (1995) Pigs breeding and infertility. In Animal Breeding and Infertility, pp. 278353 [Meredith, MJ, editor]. Oxford: Blackwell Science.
36. Hakkarainen, J (1975) Developmental changes of protein, RNA, DNA, lipid, and glycogen in the liver, skeletal muscle and brain of the pig. Acta Vet Scand 59, Suppl., 1198.
37. Lahaye, M & Keaffer, B (1997) Seaweed dietary fibres: structure, physico-chemical and biological properties relevant to intestinal physiology. Sci Aliments 17, 563584.
38. MacArtain, P, Gill, CIR, Brooks, M, et al. (2007) Nutritional value of edible seaweeds. Nutr Rev 65, 535543.
39. Bourne, FJ & Curtis, J (1973) The transfer of immunoglobins IgG, IgA and IgM from serum to colostrum and milk in the sow. Immunology 24, 157162.
40. Huang, SC, Hu, Z, Hasler-Rapacz, J, et al. (1992) Preferential mammary storage and secretion of immunoglobulin γ (IgG) subclasses in swine. J Reprod Immunol 21, 1528.
41. Schnulle, PM & Hurley, WL (2003) Sequence and expression of the FcRn in the porcine mammary gland. Vet Immunol Immunopathol 91, 227231.
42. Lallès, JP, Bosi, P, Smidt, H, et al. (2007) Weaning – a challenge to gut physiologists. Livest Sci 108, 8293.
43. Daniel, H (2004) Molecular and integrative physiology of intestinal peptide transport. Annu Rev Physiol 66, 361384.
44. Van Goudoever, JB, Corpeleijn, W, Riedijk, M, et al. (2008) The impact of enteral insulin-like growth factor 1 and nutrition on gut permeability and amino acid utilization. J Nutr 138, 1829S1833S.
45. Cera, KR, Mahan, DC, Cross, RF, et al. (1988) Effect of age, weaning and postweaning diet on small intestinal growth and jejunal morphology in young swine. J Anim Sci 66, 574584.
46. Pluske, JR, Hampson, DJ & Williams, IH (1997) Factors influencing the structure and function of the small intestine in the weaned pig: a review. Livest Prod Sci 51, 215236.
47. Ferraris, RP (2001) Dietary and developmental regulation of intestinal sugar transport. Biochem J 360, 265276.
48. Toloza, EM & Diamond, J (1992) Ontogenetic development of nutrient transporters in rat intestine. Am J Physiol 263, G593G604.
49. Shu, HJ, Takeda, H, Shinzawa, H, et al. (2002) Effect of lipopolysaccharide on peptide transporter 1 expression in rat small intestine and its attenuation by dexamethasone. Digestion 65, 2129.
50. Heim, G, O'Shea, CJ, Doyle, DN, et al. (2015) Effect of maternal dietary supplementation of laminarin and fucoidan, independently or in combination, on pig growth performance and aspects of intestinal health. Anim Feed Sci Tech 204, 2841.
51. Sweeney, T, Collins, C, Reilly, P, et al. (2012). Effect of purified β-glucans derived from Laminaria digitata, Laminaria hyperborea and Saccharomyces cerevisiae on piglet performance, selected bacterial populations, volatile fatty acids and pro-inflammatory cytokines in the gastrointestinal tract of pigs. Br J Nutr 108, 12261234.
52. Shibata, H, Iimuro, M, Uchiya, N, et al. (2003) Preventive effects of Cladosiphon fucoidan against Helicobacter pylori infection in Mongolian gerbils. Helicobacter 8, 5965.
53. Nyachoti, CM, Omogbenigun, FO, Rademacher, M, et al. (2006). Performance responses and indicators of gastrointestinal health in early-weaned pigs fed low-protein amino acid-supplemented diets. J Anim Sci 84, 125134.
54. Medvedev, AE, Piao, W, Shoenfelt, J, et al. (2007) Role of TLR4 tyrosine phosphorylation in signal transduction and endotoxin tolerance. J Biol Chem 282, 1604216053.
55. Johnson, RW & von Borell, E (1994) Lipopolysaccharide-induced sickness behavior in pigs is inhibited by pretreatment with indomethacin. J Anim Sci 72, 309314.
56. Johnson, RW (1997) Inhibition of growth by pro-inflammatory cytokines: an integrated view. J Anim Sci 75, 12441255.
57. Mair, KH, Sedlak, C, Käser, T, et al. (2014) The porcine innate immune system: an update. Dev Comp Biol 45, 321343.
58. Dalrymple, SA, Slattery, R, Aud, DM, et al. (1996) Interleukin-6 is required for a protective immune response to systemic Escherichia coli infection. Infec Immun 64, 32313235.
59. Kasahara, T, Mukaida, N, Yamashita, K, et al. (1991) IL-1 and TNF-α induction of IL-8 and monocyte chemotactic and activating factor (MCAF) mRNA expression in a human astrocytoma cell line. Immunology 74, 6067.
60. McLamb, BL, Gibson, AJ, Overman, EL, et al. (2013) Early weaning stress in pigs impairs innate mucosal immune responses to enterotoxigenic E. coli challenge and exacerbates intestinal injury and clinical disease. PLOS ONE 8, e59838.
61. Li, J, Li, DF, Xing, JJ, et al. (2006) Effects of β-glucans extracted from Saccharomyces cerevisiae on growth performance, and immunological and somatotropic responses of pigs challenged with Escherichia coli lipopolysaccharide. J Anim Sci 84, 23742381.
62. Lauw, FN, Pajkrt, D, Hack, CE, et al. (2000) Proinflammatory effects of IL-10 during human endotoxemia. J Immunol 165, 27832789.
63. Girard, F, Oswald, IP, Taranu, I, et al. (2005) Host immune status influences the development of attaching and effacing lesions in weaned pigs. Infect Immun 73, 55145523.
64. Brown, GD & Gordon, S (2005) Immune recognition of fungal β-glucans. Cell Microbiol 7, 471479.
65. Xiao, Z, Trincado, CA & Murtaugh, MPB (2004) Glucan enhancement of T cell IFN-γ response in swine. Vet Immunol Immunopathol 102, 315320.
66. Chaung, HC, Huang, TC, Yu, JH, et al. (2009) Immunomodulatory effects of β-glucans on porcine aveolar macrophages and bone marrow haematopoietic cell-derived dendritic cells. Vet Immunol Immunopathol 131, 147157.
67. Sauvant, D, Perez, J-M & Tran, G (editors) (2004) Tables of Composition and Nutritional Value of Feed Materials. Pigs, Poultry, Cattle, Sheep, Goats, Rabbits, Horses, Fish. Wageningen: Wageningen Academic Publishers.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed