Skip to main content Accessibility help
×
Home

Estimation of daily selenium intake by 3- to 5-year-old Japanese children based on selenium excretion in 24-h urine samples

  • Yoshitaka Nakamura (a1), Michiko Fukushima (a2), Seiko Hoshi (a3), Amares Chatt (a4) and Takashi Sakata (a2)...

Abstract

To evaluate the daily Se intake of 3- to 5-year-old Japanese children, we used seventy-two urine samples collected from fifty-three children (twenty-seven male and twenty-six female) from two cities in Miyagi prefecture, Japan. For measuring low Se concentrations with high precision, accuracy and rapidity in the 24-h urine samples, we developed an instrumental neutron activation analysis (INAA) method, that is without any chemical separation, using the short-lived 77mSe (t1/2 = 17·4 s) nuclide. The estimated Se intake of the fifty-three children was 51·5 (sd 30·2) µg/d (geometric mean: 42·7 µg/d). Ten subjects (three male and seven female), successfully provided 24-h urine samples over two or three consecutive days; their Se intake was 37·4 (sd 5·9) µg/d. Based on the logarithmically transformed data of these ten subjects, the ratio of intra-/inter-individual variances of usual Se intake was 16·7 (28·0/1·7) and geometric mean was 27·7 µg/d. The 5th to 95th percentile of usual Se intake of these ten subjects was 17·5 to 40·4 µg/d, which ranged between the recommended dietary allowance and tolerable upper intake level of Se by the Dietary Reference Intakes for Japanese (2015).

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Estimation of daily selenium intake by 3- to 5-year-old Japanese children based on selenium excretion in 24-h urine samples
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Estimation of daily selenium intake by 3- to 5-year-old Japanese children based on selenium excretion in 24-h urine samples
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Estimation of daily selenium intake by 3- to 5-year-old Japanese children based on selenium excretion in 24-h urine samples
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Corresponding author: Yoshitaka Nakamura, email yoshitaka.nakamura@meiji.com

Footnotes

Hide All

These authors contributed equally to this work.

Footnotes

References

Hide All
1.Terry, EN & Diamond, AM (2012) Selenium. In Present Knowledge in Nutrition, 10th ed., pp. 568585 [Erdman, JW, Macdonald, IA and Zeisel, SHH, editors]. Washington, DC: ILSI Press Inc.
2.van Rij, AM, Thomson, CD, McKenzie, JM, et al. (1979) Selenium deficiency in total parenteral nutrition. Am J Clin Nutr 32, 20762085.
3.Lockitch, G, Taylor, GP, Wong, LT, et al. (1990) Cardiomyopathy associated with nonendemic selenium deficiency in a Caucasian adolescent. Am J Clin Nutr 52, 572577.
4.Yang, GQ, Wang, SZ, Zhou, RH, et al. (2011) Endemic selenium intoxication of humans in China. Am J Clin Nutr 37, 872881.
5.Fairweather-Tait, SJ, Bao, Y, Broadley, MR, et al. (2011) Selenium in human health and disease. Antioxid Redox Signal 14, 13371383.
6.Fordyce, FM (2013) Selenium deficiency and toxicity in the environment. In Essentials of Medical Geology, pp. 375416 [Selinus, O, editor]. Dordrecht: Springer.
7.Yoneyama, S, Miura, K, Itai, K, et al. (2008) Dietary intake and urinary excretion of selenium in the Japanese adult population: the INTERMAP study Japan. Eur J Clin Nutr 62, 11871193.
8.Hirayama, F, Lee, AH, Oura, A, et al. (2010) Dietary intake of six minerals in relation to the risk of chronic obstructive pulmonary disease. Asia Pac J Clin Nutr 19, 572577.
9.Miyazaki, Y, Koyama, H, Sasada, Y, et al. (2004) Dietary habits and selenium intake of residents in mountain and coastal communities in Japan. J Nutr Sci Vitaminol 50, 309319.
10.Hawkes, WC, Alkan, FZ & Oehle, L (2003) Absorption, distribution and excretion of selenium from beef and rice in healthy North American men. J Nutr 133, 34343442.
11.Alaejos, MS & Romero, CD (1993) Urinary selenium concentrations. Clin Chem 39, 20402052.
12.Haga, M & Sakata, T (2010) Daily salt intake of healthy Japanese infants of 3–5 years based on sodium excretion in 24-hour urine. J Nutr Sci Vitaminol 56, 305310.
13.Haga, M & Sakata, T (2007) Estimation of overnight urine volume and 24-hour urine volume in healthy Japanese infants (in Japanese). J Jap Soc Nutr Food Sci 60, 213220.
14.Okubo, N (2002) How to handle liquified samples and a standard examination method-urine (in Japanese). Med Technol 30, 555563.
15.Pettersson, J, Hansson, L, Omemark, U, et al. (1988) Fluorimetry of selenium in body fluids after digestion with nitric acid, magnesium nitrate hexahydrate, and hydrochloric acid. Clin Chem 34, 19081910.
16.Faulkner, AG, Knoblock, EC & Purdy, WC (1961) The polarographic determination of selenium in urine. Clin Chem 7, 2229.
17.Dauchy, X, Potin-Gautier, M, Astruc, A, et al. (1994) Analytical methods for the speciation of selenium compounds: a review. Fresenius J Anal Chem 348, 792805.
18.Pyrzynska, K (1998) Speciation of selenium compounds. Anal Sci 14, 479483.
19.Sun, HW, Wang, WX, Zhang, DQ, et al. (1995) Determination of trace selenium in urine by derivative hydride generation atomic absorption spectrometry. In Proceedings of the 2nd International Symposium of Worldwide Chinese Scholars on Analytical Chemistry, Part F27, p. 1409. Jinan, China: Jinan University Press.
20.Sun, HW, Ha, J, Zhang, DQ, et al. (2002) Determination of trace selenium in urine by derivative hydride generation atomic absorption spectrometry. Anal Sci 18, 603605.
21.Van Dael, P, Davidsson, L, Ziegler, EE, et al. (2002) Comparison of selenite and selenate apparent absorption and retention in infants using stable isotope methodology. Pediatr Res 51, 7175.
22.White, MA (1999) A comparison of inductively coupled plasma mass spectrometry with electrothermal atomic absorption spectrophotometry for the determination of trace elements in blood and urine from non occupationally exposed populations. J Trace Elements Med Biol 13, 93101.
23.Yang, KL & Jiang, SJ (1995) Determination of selenium compounds in urine samples by liquid chromatography-inductively coupled plasma mass spectrometry with an ultrasonic nebulizer. Anal Chim Acta 307, 109115.
24.Chatterjee, A, Tao, H, Shibata, Y, et al. (2003) Determination of selenium compounds in urine by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. J Chromatogr A 997, 249257.
25.Francesconi, KA & Pannier, F (2004) Selenium metabolites in urine: a critical overview of past work and current status. Clin Chem 50, 22402253.
26.Chattopadhyay, A & DeSilva, KN (1979) Pseudo-cyclic neutron activation analysis of Ag, F, Rb, Sc, and Se in biological samples. Trans Am Nucl Soc 32, 185.
27.DeSilva, KN (1981) A Correction Method for Coincidence Losses in Neutron Activation Analysis with Short Lived Nuclides. PhD thesis, Dalhousie University, Canada.
28.DeSilva, KN & Chatt, A (1983) A method to improve precision and detection limits for determining trace elements through short lived nuclides. J Trace Microprobe Tech 1, 307337.
29.Kasperek, K, Iyengar, GV, Klem, J, et al. (1979) Elemental composition of platelets. Part III. Determination of Ag, Au, Cd, Co, Cr, Cs, Mo, Rb, Sb, and Se in normal human platelets by neutron activation analysis. Clin Chem 25, 711715.
30.Iyengar, V & Woittiez, J (1988) Trace elements in human clinical specimens: evaluation of literature data to identify reference values. Clin Chem 34, 474481.
31.Ohira, S, Kirk, AB, Dyke, JV, et al. (2008) Creatinine adjustment of spot urine samples and 24 h excretion of iodine, selenium, perchlorate, and thiocyanate. Environ Sci Technol 42, 94199423.
32.Janghorbani, M, Xia, Y, Ha, P, et al. (1999) Metabolism of selenite in men with widely varying selenium status. J Am Coll Nutr 18, 462469.
33.Nusser, SM, Carriquiry, AL, Dodd, KW, et al. (1996) A semiparametric transformation approach to estimating usual daily intake distributions. J Am Stat Assoc 91, 14401449.
34.Dodd, KW, Guenther, PM, Freedman, LS, et al. (2006) Statistical methods for estimating usual intake of nutrients and foods: a review of the theory. J Am Diet Assoc 106, 16401650.
35.Hishida, A & Sasaki, S (editors) (2015) Dietary Reference Intakes for Japanese (2015). Tokyo: Ministry of Health, Labour and Welfare. http://www.mhlw.go.jp/file/06-Seisakujouhou-10900000-Kenkoukyoku/Full_DRIs2015.pdf (accessed July 2019).
36.Tsuda, M, Hasunuma, R, Kawanishi, Y, et al. (1995) Urinary concentrations of heavy metals in healthy Japanese under 20 years of age: a comparison between concentrations expressed in terms of creatinine and of selenium. Tokai J Exp Clin Med 20, 5364.
37.Zhou, BF, Stamler, J, Dennis, B, et al. (2003) Nutrient intakes of middle-aged men and women in China, Japan, United Kingdom, and United States in the late 1990s: The INTERMAP study. J Hum Hypertens 17, 623630.
38.Yamashita, Y, Yamashita, M & Iida, H (2013) Selenium content in seafood in Japan. Nutrients 5, 388395.
39.Abdulah, R, Miyazaki, K, Nakazawa, M, et al. (2005) Low contribution of rice and vegetables to the daily intake of selenium in Japan. Int J Food Sci Nutr 56, 463471.
40.Chatt, A (1988) Instrumental and preconcentration NAA methods for selenium in biological materials. Trans Am Nucl Soc 56, 152.
41.Chatt, A & Holzbecher, J (1990) Cyclic and pseudo-cyclic neutron activation analysis for trace elements. Trans Am Nucl Soc 62, 220222.
42.Chatt, A, Rao, RR, Jayawickreme, CK, et al. (1990) Determination of sampling constants for selenium in biological reference materials by neutron activation. Fresenius J Anal Chem 338, 399407.
43.Rao, RR, Jayawickreme, CK, McDowell, LS, et al. (1991) Evaluation of homogeneity of selected reference materials for selenium by cyclic neutron activation analysis. J Radioanal Nucl Chem 151, 167175.
44.Rao, RR & Chatt, A (1991) Internal and external quality assessment in cyclic neutron activation analysis for selenium. Trans Am Nucl Soc 64, 45.
45.Zhang, W (1997) Studies on Anticoincidence Gamma-Ray Spectrometry in Neutron Activation Analysis. PhD Thesis, Dalhousie University, Halifax, NS, Canada.
46.Zhang, W & Chatt, A (1997) A quality assurance programme for the determination of selenium in foods by instrumental neutron activation analysis. In Harmonization of Health Related Environmental Measurements using Nuclear and Isotopic Techniques, IAEA-SM-344, pp. 421434. Vienna, Austria: International Atomic Energy Agency. https://inis.iaea.org/collection/NCLCollectionStore/_Public/29/019/29019678.pdf?r=1&r=1 (accessed July 2019).
47.Zhang, W & Chatt, A (2009) Determination of selenium in foods by pseudo-cyclic neutron activation and anti-coincidence γ-ray spectrometry. J Radioanal Nucl Chem 282, 139143.
48.Lombeck, I (1983) The evaluation of selenium state in children. J Inherit Metab Dis 6, 8384.

Keywords

Estimation of daily selenium intake by 3- to 5-year-old Japanese children based on selenium excretion in 24-h urine samples

  • Yoshitaka Nakamura (a1), Michiko Fukushima (a2), Seiko Hoshi (a3), Amares Chatt (a4) and Takashi Sakata (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed