Skip to main content Accessibility help
×
Home

Dietary gamma-linolenic acid supports arachidonic acid accretion and associated Δ-5 desaturase activity in feline uterine but not ovarian tissues*

  • Amy J. Chamberlin (a1) (a2) and John E. Bauer (a1) (a2)

Abstract

Arachidonic acid (ARA) is essential in felines because conversion of dietary linoleic acid (LA) to ARA is rate-limited by low Δ6-desaturase. Dietary γ-linolenic acid (GLA) may serve as an ARA precursor by-passing this initial rate-limiting step. This possibility was investigated using twenty-six adult female domestic shorthair cats divided into three groups and fed on complete and balanced diets containing high GLA (GL), high LA (HL) or low LA (LL, control) diets, for 300 d prior to ovariohysterectomy. Plasma was obtained 1–2 d before surgery and uterine, ovarian and associated adipose tissues were reserved for lipid analysis. Fatty acid profiles of the plasma phospholipid (PL) fractions and adipose lipids were performed. In the GL group, plasma and uterine tissue PL were significantly enriched in GLA, di-homo GLA (DGLA) and ARA compared with control. However, ovarian and adipose tissue PL were only enriched in DGLA. Enrichment of uterine tissues with DGLA and ARA probably supplies the essential eicosanoid precursors for reproduction when GLA is fed consistently with an active Δ5-desaturase in uterus. By contrast, this enzyme appears less active in ovary because ARA was not higher compared with control. Earlier reports concluded that ARA was not necessary for fertilisation (an ovarian function), but required for successful pregnancy and reproduction (a uterine function). Adipose tissue DGLA may be a reservoir for ARA synthesis by other tissues upon mobilisation. Dietary GLA may meet feline ARA requirements in the absence of an animal-based preformed source of ARA.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary gamma-linolenic acid supports arachidonic acid accretion and associated Δ-5 desaturase activity in feline uterine but not ovarian tissues*
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary gamma-linolenic acid supports arachidonic acid accretion and associated Δ-5 desaturase activity in feline uterine but not ovarian tissues*
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary gamma-linolenic acid supports arachidonic acid accretion and associated Δ-5 desaturase activity in feline uterine but not ovarian tissues*
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution license .

Corresponding author

Corresponding author: Dr Bauer, email jbauer@cvm.tamu.edu

Footnotes

Hide All
*

This article was published as part of the WALTHAM International Nutritional Sciences Symposium Proceedings 2013.

Footnotes

References

Hide All
1. Sinclair, AJ, McLean, JG & Monger, EA (1979) Metabolism of linoleic acid in the cat. Lipids 14, 932936.
2. Rivers, JPW, Sinclair, AJ & Crawford, MA (1975) Inability of the cat to desaturate essential fatty acids. Nature 258, 171173.
3. Rivers, JPW, Hassam, AG, Crawford, MA & Brambell, MR (1976) The absence of Δ6-desaturase activity in cats. Proc Nutr Soc 35, 69A.
4. Rivers, JPW, Sinclair, AJ, Moore, DP & Crawford, MA (1976) The abnormal metabolism of essential fatty acids in cat. Proc Nutr Soc 35, 68A.
5. Pawlosky, RA, Barnes, A & Salem, N Jr (1994) Essential fatty acid metabolism in the feline: relationship between liver and brain production of long chain polyunsaturated fatty acids. J Lipid Res 35, 20322040.
6. MacDonald, ML, Rogers, QR, Morris, JG & Cuppsaz, PT (1984) Efflects of linoleate and arachidonate deficiencies on reproduction and spermatogenesis in the cat. J Nutr 114, 719726.
7. Morris, JG (2004) Do cats need arachidonic acid for reproduction? J Anim Physiol Anim Nutr (Berl) 88, 131137.
8. Trevizan, L, de Mello Kessler, A, Brenna, JT, Lawrence, P, Waldron, MK & Bauer, JE (2012) Maintenance of arachidonic acid and evidence of Δ5 desaturation in cats fed γ-linolenic and linoleic acid enriched diets. Lipids 47, 413423.
9. Dunbar, BL, Bigley, KE & Bauer, JE (2010) Early and sustained enrichment of serum n-3 long chain polyunsaturated fatty acids in dogs fed a flaxseed supplemented diet. Lipids 45, 110.
10. Kumar, R, Ramteke, PW, Nath, A, Pramod, RK, Singh, SP, Sharma, SK & Kumar, S (2013) Role of candidate genes regulating uterine prostaglandins biosynthesis for maternal recognition of pregnancy in domestic animals. ISRN Physiology, Hindawi Publishing, Volume 2013, Article ID 854572, 8 pp. http://dx.doi.org/10.1155/2013/854572

Keywords

Dietary gamma-linolenic acid supports arachidonic acid accretion and associated Δ-5 desaturase activity in feline uterine but not ovarian tissues*

  • Amy J. Chamberlin (a1) (a2) and John E. Bauer (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed