Skip to main content Accessibility help
×
Home

Association between vegetarian diets and cardiovascular risk factors in non-Hispanic white participants of the Adventist Health Study-2

  • Seiji Matsumoto (a1), W. Lawrence Beeson (a1) (a2), David J. Shavlik (a1), Gina Siapco (a1), Karen Jaceldo-Siegl (a1) (a2), Gary Fraser (a2) and Synnove F. Knutsen (a1) (a2)...

Abstract

The association between dietary patterns and CVD risk factors among non-Hispanic whites has not been fully studied. Data from 650 non-Hispanic white adults who participated in one of two clinical sub-studies (about 2 years after the baseline) of the Adventist Health Study-2 (AHS-2) were analysed. Four dietary patters were identified using a validated 204-item semi-quantitative FFQ completed at enrolment into AHS-2: vegans (8·3 %), lacto-ovo-vegetarians (44·3 %), pesco-vegetarians (10·6 %) and non-vegetarians (NV) (37·3 %). Dietary pattern-specific prevalence ratios (PR) of CVD risk factors were assessed adjusting for confounders with or without BMI as an additional covariable. The adjusted PR for hypertension, high total cholesterol and high LDL-cholesterol were lower in all three vegetarian groups. Among the lacto-ovo-vegetarians the PR were 0·57 (95 % CI 0·45, 0·73), 0·72 (95 % CI 0·59, 0·88) and 0·72 (95 % CI 0·58, 0·89), respectively, which remained significant after additionally adjusting for BMI. The vegans and the pesco-vegetarians had similar PR for hypertension at 0·46 (95 % CI 0·25, 0·83) and 0·62 (95 % CI 0·42, 0·91), respectively, but estimates were attenuated and marginally significant after adjustment for BMI. Compared with NV, the PR of obesity and abdominal adiposity, as well as other CVD risk factors, were significantly lower among the vegetarian groups. Similar results were found when limiting analyses to participants not being treated for CVD risk factors, with the vegans having the lowest mean BMI and waist circumference. Thus, compared with the diet of NV, vegetarian diets were associated with significantly lower levels of CVD risk factors among the non-Hispanic whites.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Association between vegetarian diets and cardiovascular risk factors in non-Hispanic white participants of the Adventist Health Study-2
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Association between vegetarian diets and cardiovascular risk factors in non-Hispanic white participants of the Adventist Health Study-2
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Association between vegetarian diets and cardiovascular risk factors in non-Hispanic white participants of the Adventist Health Study-2
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Corresponding author: Synnove F. Knutsen, fax +1 909 558 0493, email sknutsen@llu.edu

References

Hide All
1.Heron, M (2017) Deaths: leading causes for 2015. Natl Vital Stat Rep 66, 176.
2.Mozaffarian, D, Benjamin, EJ, Go, AS, et al. (2015) Heart disease and stroke statistics – 2015 update: a report from the American Heart Association. Circulation 131, e29e322.
3.Fraser, G, Katuli, S, Anousheh, R, et al. (2015) Vegetarian diets and cardiovascular risk factors in black members of the Adventist Health Study-2. Public Health Nutr 18, 537545.
4.Pettersen, BJ, Anousheh, R, Fan, J, et al. (2012) Vegetarian diets and blood pressure among white subjects: results from the Adventist Health Study-2 (AHS-2). Public Health Nutr 15, 19091916.
5.Rizzo, NS, Sabate, J, Jaceldo-Siegl, K, et al. (2011) Vegetarian dietary patterns are associated with a lower risk of metabolic syndrome: the Adventist Health Study 2. Diabetes Care 34, 12251227.
6.Tonstad, S, Butler, T, Yan, R, et al. (2009) Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care 32, 791796.
7.Spencer, EA, Appleby, PN, Davey, GK, et al. (2003) Diet and body mass index in 38000 EPIC-Oxford meat-eaters, fish-eaters, vegetarians and vegans. Int J Obes Relat Metab Disord 27, 728734.
8.Appleby, PN, Davey, GK & Key, TJ (2002) Hypertension and blood pressure among meat eaters, fish eaters, vegetarians and vegans in EPIC-Oxford. Public Health Nutr 5, 645654.
9.Crowe, FL, Appleby, PN, Travis, RC, et al. (2013) Risk of hospitalization or death from ischemic heart disease among British vegetarians and nonvegetarians: results from the EPIC-Oxford cohort study. Am J Clin Nutr 97, 597603.
10.Shridhar, K, Dhillon, PK, Bowen, L, et al. (2014) The association between a vegetarian diet and cardiovascular disease (CVD) risk factors in India: the Indian Migration Study. PLOS ONE 9, e110586.
11.Barnard, ND, Cohen, J, Jenkins, DJ, et al. (2006) A low-fat vegan diet improves glycemic control and cardiovascular risk factors in a randomized clinical trial in individuals with type 2 diabetes. Diabetes Care 29, 17771783.
12.Mishra, S, Xu, J, Agarwal, U, et al. (2013) A multicenter randomized controlled trial of a plant-based nutrition program to reduce body weight and cardiovascular risk in the corporate setting: the GEICO study. Eur J Clin Nutr 67, 718724.
13.Martinez-Gonzalez, MA, Sanchez-Tainta, A, Corella, D, et al. (2014) A provegetarian food pattern and reduction in total mortality in the Prevencion con Dieta Mediterranea (PREDIMED) study. Am J Clin Nutr 100, Suppl. 1, 320S328S.
14.Nicklas, TA, O'Neil, CE & Fulgoni, VL III (2012) Diet quality is inversely related to cardiovascular risk factors in adults. J Nutr 142, 21122118.
15.Martinez-Gonzalez, MA, Guillen-Grima, F, De Irala, J, et al. (2012) The Mediterranean diet is associated with a reduction in premature mortality among middle-aged adults. J Nutr 142, 16721678.
16.Schulz, M, Hoffmann, K, Weikert, C, et al. (2008) Identification of a dietary pattern characterized by high-fat food choices associated with increased risk of breast cancer: the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Br J Nutr 100, 942946.
17.Mozaffarian, D & Wu, JH (2011) Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol 58, 20472067.
18.Del Gobbo, LC, Imamura, F, Aslibekyan, S, et al. (2016) Omega-3 polyunsaturated fatty acid biomarkers and coronary heart disease: pooling project of 19 cohort studies. JAMA Intern Med 176, 11551166.
19.Lee, JW, Morton, KR, Walters, J, et al. (2009) Cohort profile: the Biopsychosocial Religion and Health Study (BRHS). Int J Epidemiol 38, 14701478.
20.Butler, TL, Fraser, GE, Beeson, WL, et al. (2008) Cohort profile: the Adventist Health Study-2 (AHS-2). Int J Epidemiol 37, 260265.
21.Jaceldo-Siegl, K, Knutsen, SF, Sabate, J, et al. (2010) Validation of nutrient intake using an FFQ and repeated 24 h recalls in black and white subjects of the Adventist Health Study-2 (AHS-2). Public Health Nutr 13, 812819.
22.Fraser, GE (2009) Vegetarian diets: what do we know of their effects on common chronic diseases? Am J Clin Nutr 89, 1607S1612S.
23.Rizzo, NS, Jaceldo-Siegl, K, Sabate, J, et al. (2013) Nutrient profiles of vegetarian and nonvegetarian dietary patterns. J Acad Nutr Diet 113, 16101619.
24.McEwen, BS (1998) Stress, adaptation, and disease. Allostasis and allostatic load. Ann N Y Acad Sci 840, 3344.
25.Krishnaveni, P & Gowda, VM (2015) Assessing the validity of Friedewald's formula and Anandraja's formula for serum LDL-cholesterol calculation. J Clin Diagn Res 9, BC01BC04.
26.Herring, RP, Butler, T, Hall, S, et al. (2010) Recruiting black Americans in a large cohort study: the Adventist Health Study-2 (AHS-2) design, methods and participant characteristics. Ethn Dis 20, 437443.
27.McNutt, LA, Wu, C, Xue, X, et al. (2003) Estimating the relative risk in cohort studies and clinical trials of common outcomes. Am J Epidemiol 157, 940943.
28.Knol, MJ, Le Cessie, S, Algra, A, et al. (2012) Overestimation of risk ratios by odds ratios in trials and cohort studies: alternatives to logistic regression. CMAJ 184, 895899.
29.Williamson, T, Eliasziw, M & Fick, GH (2013) Log-binomial models: exploring failed convergence. Emerg Themes Epidemiol 10, 14.
30.Zou, G (2004) A modified Poisson regression approach to prospective studies with binary data. Am J Epidemiol 159, 702706.
31.Yelland, LN, Salter, AB & Ryan, P (2011) Performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data. Am J Epidemiol 174, 984992.
32.Phillips, RL (1975) Role of life-style and dietary habits in risk of cancer among seventh-day adventists. Cancer Res 35, 35133522.
33.Winkleby, MA, Jatulis, DE, Frank, E, et al. (1992) Socioeconomic status and health: how education, income, and occupation contribute to risk factors for cardiovascular disease. Am J Public Health 82, 816820.
34.Alles, B, Baudry, J, Mejean, C, et al. (2017) Comparison of sociodemographic and nutritional characteristics between self-reported vegetarians, vegans, and meat-eaters from the NutriNet-Sante Study. Nutrients 9, E1023.
35.Jones, PH, Davidson, MH, Stein, EA, et al. (2003) Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR* Trial). Am J Cardiol 92, 152160.
36.Walldius, G & Jungner, I (2006) The apoB/apoA-I ratio: a strong, new risk factor for cardiovascular disease and a target for lipid-lowering therapy – a review of the evidence. J Intern Med 259, 493519.
37.Fraser, G & Yan, R (2007) Guided multiple imputation of missing data: using a subsample to strengthen the missing-at-random assumption. Epidemiology 18, 246252.
38.Cockerham, WC, Bauldry, S, Hamby, BW, et al. (2017) A comparison of black and white racial differences in health lifestyles and cardiovascular disease. Am J Prev Med 52, S56S62.
39.Heron, M (2018) Deaths: leading causes for 2016. Natl Vital Stat Rep 67, 177.
40.Flegal, KM, Kruszon-Moran, D, Carroll, MD, et al. (2016) Trends in obesity among adults in the United States, 2005 to 2014. JAMA 315, 22842291.
41.Martins, MCT, Jaceldo-Siegl, K, Orlich, M, et al. (2017) A new approach to assess lifetime dietary patterns finds lower consumption of animal foods with aging in a longitudinal analysis of a health-oriented Adventist population. Nutrients 9, 1118.
42.Ganz, ML, Wintfeld, N, Li, Q, et al. (2014) The association of body mass index with the risk of type 2 diabetes: a case–control study nested in an electronic health records system in the United States. Diabetol Metab Syndr 6, 50.
43.Narayan, KM, Boyle, JP, Thompson, TJ, et al. (2007) Effect of BMI on lifetime risk for diabetes in the U.S. Diabetes Care 30, 15621566.
44.InterAct Consortium (2012) Long-term risk of incident type 2 diabetes and measures of overall and regional obesity: the EPIC-InterAct case–cohort study. PLoS Med 9, e1001230.
45.Tonstad, S, Stewart, K, Oda, K, et al. (2013) Vegetarian diets and incidence of diabetes in the Adventist Health Study-2. Nutr Metab Cardiovasc Dis 23, 292299.
46.Orlich, MJ, Singh, PN, Sabate, J, et al. (2013) Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Intern Med 173, 12301238.
47.Feller, S, Boeing, H & Pischon, T (2010) Body mass index, waist circumference, and the risk of type 2 diabetes mellitus: implications for routine clinical practice. Dtsch Arztebl Int 107, 470476.
48.Trichopoulou, A, Kouris-Blazos, A, Wahlqvist, ML, et al. (1995) Diet and overall survival in elderly people. Br Med J 311, 14571460.
49.Trichopoulou, A, Costacou, T, Bamia, C, et al. (2003) Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med 348, 25992608.
50.Davey, GK, Spencer, EA, Appleby, PN, et al. (2003) EPIC-Oxford: lifestyle characteristics and nutrient intakes in a cohort of 33 883 meat-eaters and 31 546 non meat-eaters in the UK. Public Health Nutr 6, 259269.
51.Orlich, MJ, Jaceldo-Siegl, K, Sabate, J, et al. (2014) Patterns of food consumption among vegetarians and non-vegetarians. Br J Nutr 112, 16441653.
52.Sabate, J, Fraser, GE, Burke, K, et al. (1993) Effects of walnuts on serum lipid levels and blood pressure in normal men. N Engl J Med 328, 603607.
53.Kelly, JH Jr & Sabate, J (2006) Nuts and coronary heart disease: an epidemiological perspective. Br J Nutr 96, Suppl. 2, S61S67.
54.Clarys, P, Deliens, T, Huybrechts, I, et al. (2014) Comparison of nutritional quality of the vegan, vegetarian, semi-vegetarian, pesco-vegetarian and omnivorous diet. Nutrients 6, 13181332.
55.Tognon, G, Lissner, L, Saebye, D, et al. (2014) The Mediterranean diet in relation to mortality and CVD: a Danish cohort study. Br J Nutr 111, 151159.
56.Tong, TY, Wareham, NJ, Khaw, KT, et al. (2016) Prospective association of the Mediterranean diet with cardiovascular disease incidence and mortality and its population impact in a non-Mediterranean population: the EPIC-Norfolk study. BMC Med 14, 135.
57.Shvetsov, YB, Harmon, BE, Ettienne, R, et al. (2016) The influence of energy standardisation on the alternate Mediterranean diet score and its association with mortality in the Multiethnic Cohort. Br J Nutr 116, 15921601.
58.Kastorini, CM, Panagiotakos, DB, Chrysohoou, C, et al. (2016) Metabolic syndrome, adherence to the Mediterranean diet and 10-year cardiovascular disease incidence: The ATTICA study. Atherosclerosis 246, 8793.
59.Stefler, D, Malyutina, S, Kubinova, R, et al. (2017) Mediterranean diet score and total and cardiovascular mortality in Eastern Europe: the HAPIEE study. Eur J Nutr 56, 421429.
60.Fung, TT, Chiuve, SE, McCullough, ML, et al. (2008) Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch Intern Med 168, 713720.
61.Key, TJ, Appleby, PN, Spencer, EA, et al. (2009) Mortality in British vegetarians: results from the European Prospective Investigation into Cancer and Nutrition (EPIC-Oxford). Am J Clin Nutr 89, 1613S1619S.
62.Emerging Risk Factors Collaboration (2009) Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302, 19932000.
63.National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2002) Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 106, 31433421.
64.Stone, NJ, Robinson, JG, Lichtenstein, AH, et al. (2014) 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129, 25 Suppl. 2, S1–S45.
65.Goff, DC Jr, Lloyd-Jones, DM, Bennett, G, et al. (2014) 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129, 25 Suppl. 2, S49S73.
66.Grover, SA, Kaouache, M, Joseph, L, et al. (2009) Evaluating the incremental benefits of raising high-density lipoprotein cholesterol levels during lipid therapy after adjustment for the reductions in other blood lipid levels. Arch Intern Med 169, 17751780.
67.Knuiman, JT, West, CE, Katan, MB, et al. (1987) Total cholesterol and high density lipoprotein cholesterol levels in populations differing in fat and carbohydrate intake. Arteriosclerosis 7, 612619.
68.Brinton, EA, Eisenberg, S & Breslow, JL (1990) A low-fat diet decreases high density lipoprotein (HDL) cholesterol levels by decreasing HDL apolipoprotein transport rates. J Clin Invest 85, 144151.
69.McDougall, J, Litzau, K, Haver, E, et al. (1995) Rapid reduction of serum cholesterol and blood pressure by a twelve-day, very low fat, strictly vegetarian diet. J Am Coll Nutr 14, 491496.
70.Millan, J, Pinto, X, Munoz, A, et al. (2009) Lipoprotein ratios: physiological significance and clinical usefulness in cardiovascular prevention. Vasc Health Risk Manag 5, 757765.
71.Tognon, G, Berg, C, Mehlig, K, et al. (2012) Comparison of apolipoprotein (apoB/apoA-I) and lipoprotein (total cholesterol/HDL) ratio determinants. Focus on obesity, diet and alcohol intake. PLOS ONE 7, e40878.
72.Holleboom, AG, Kuivenhoven, JA, Vergeer, M, et al. (2010) Plasma levels of lecithin:cholesterol acyltransferase and risk of future coronary artery disease in apparently healthy men and women: a prospective case–control analysis nested in the EPIC-Norfolk population study. J Lipid Res 51, 416421.
73.Bittner, V, Johnson, BD, Zineh, I, et al. (2009) The triglyceride/high-density lipoprotein cholesterol ratio predicts all-cause mortality in women with suspected myocardial ischemia: a report from the Women's Ischemia Syndrome Evaluation (WISE). Am Heart J 157, 548555.
74.Miller, M, Stone, NJ, Ballantyne, C, et al. (2011) Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 123, 22922333.
75.Frohlich, J & Dobiasova, M (2003) Fractional esterification rate of cholesterol and ratio of triglycerides to HDL-cholesterol are powerful predictors of positive findings on coronary angiography. Clin Chem 49, 18731880.
76.da Luz, PL, Favarato, D, Faria-Neto, JR Jr, et al. (2008) High ratio of triglycerides to HDL-cholesterol predicts extensive coronary disease. Clinics (Sao Paulo) 63, 427432.
77.Sniderman, AD, Jungner, I, Holme, I, et al. (2006) Errors that result from using the TC/HDL C ratio rather than the apoB/apoA-I ratio to identify the lipoprotein-related risk of vascular disease. J Intern Med 259, 455461.
78.Carnevale Schianca, GP, Pedrazzoli, R, Onolfo, S, et al. (2011) ApoB/apoA-I ratio is better than LDL-C in detecting cardiovascular risk. Nutr Metab Cardiovasc Dis 21, 406411.
79.Kaneva, AM, Potolitsyna, NN, Bojko, ER, et al. (2015) The apolipoprotein B/apolipoprotein A-I ratio as a potential marker of plasma atherogenicity. Dis Markers 2015, 591454.
80.Walldius, G, Jungner, I, Aastveit, AH, et al. (2004) The apoB/apoA-I ratio is better than the cholesterol ratios to estimate the balance between plasma proatherogenic and antiatherogenic lipoproteins and to predict coronary risk. Clin Chem Lab Med 42, 13551363.
81.Flegal, KM, Graubard, BI, Williamson, DF, et al. (2011) Reverse causation and illness-related weight loss in observational studies of body weight and mortality. Am J Epidemiol 173, 19.

Keywords

Association between vegetarian diets and cardiovascular risk factors in non-Hispanic white participants of the Adventist Health Study-2

  • Seiji Matsumoto (a1), W. Lawrence Beeson (a1) (a2), David J. Shavlik (a1), Gina Siapco (a1), Karen Jaceldo-Siegl (a1) (a2), Gary Fraser (a2) and Synnove F. Knutsen (a1) (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed