Skip to main content Accessibility help
×
Home

Zr-Cu-Ni-Al-Ta glassy matrix composites with enhanced plasticity

  • Wenbo Dong (a1), Haifeng Zhang (a1), Wensheng Sun (a1), Aimin Wang (a1), Hong Li (a1) and Zhuangqi Hu (a1)...

Abstract

(Zr62Cu15.4Ni12.6) (x = 6–12) in situ glassy composites containing uniformly distributed Ta-rich particles were prepared by arc-melting and copper mould casting. The results show that addition of 6–10 at.% Ta to Zr62Cu15.4Ni12.6Al10 results in dissolution of 2.4 to 4.6 at.% Ta in the glassy matrix, which promotes glass-forming ability, and the remaining Ta precipitates out as body-centered cubic (BCC) Ta-rich particles dispersed on the glassy matrix. The critical diameters for the composites with 6, 8, and 10 at.% Ta are 7, 7, and 6 mm, respectively. At 12 at.% Ta addition, the glass-forming ability is dramatically reduced because of the precipitation of secondary dendritic Ta-rich particles and other nanocrystallites from melts during copper mould casting. Also, owing to the solid-liquid reaction during induction heating, some Ta-rich particles formed in the master alloys will redissolve into the glassy matrix, resulting in a smaller volume fraction of Ta-rich particles in the as-cast glassy rods than that of the corresponding ingots. The glassy matrix composites exhibit enhanced plastic strain of about 7.5 to 22.5% at room temperature. The optimum Ta content in the glassy alloys is determined to be 10 at.%, which corresponds to the highest ultimate stress of 2220 MPa and the largest plastic strain of 22.5%. The plastic strain increases with increasing volume fraction of in situ BCC Ta-rich particles. This is apparently ascribed to the impedance of Ta-rich particles to shear bands. Ta-rich particles seed the initiation of multiple shear bands and block the shear band propagation, leading to intensive multiplication and bifurcation of shear bands.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: hfzhang@imr.ac.cn

References

Hide All
1.Choi-Yim, H., Johnson, W.L.: Bulk metallic glass matrix composites. Appl. Phys. Lett. 71, 3808 (1997).
2.Hays, C., Kim, C.P., Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).
3.He, G., Eckert, J., Loser, W., Schultz, L.: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).
4.Das, J., Löser, W., Kühn, U., Eckert, J., Roy, S.K., Schultz, L.: High strength Zr-Nb-(Cu, Ni, Al) composites with enhanced plasticity. Appl. Phys. Lett. 82, 4690 (2003).
5.He, G., Zhang, Z.F., Loser, W., Eckert, J., Schultz, L.: Effect of Ta on glass formation, thermal stability and mechanical properties of a Zr52.25Cu28.5Ni4.75Al9.5Ta5 bulk metallic glass. Acta Mater. 51, 2383 (2003).
6.Fan, C., Ott, R.T., Hufnagel, T.C.: Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phy. Lett. 81, 1020 (2002).
7.Hays, C.C., Kim, C.P., Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).
8.Greer, A.L., Castellero, A., Madge, S.V., Walker, I.T., Wilde, J.R.: Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys. Mater. Sci. Eng. 375, 1182 (2004).
9.Chen, M.W., Inoue, A., Fan, C.: Fracture behavior of a nanocrystallized Zr65Cu15Al10Pd10 metallic glass. Appl. Phys. Lett. 74, 2131 (1999).
10.Kühn, U., Eckert, J., Mattern, N., Schultz, L.: Microstructure and mechanical properties of slowly cooled Zr–Nb–Cu–Ni–Al composites with ductile bcc phase. Mater. Sci. Eng. A 375, 322 (2004).
11.Ramamurty, U., Jana, S., Kawamura, Y., Chattopadhyay, K.: Hardness and plastic deformation in a bulk metallic glass. Acta Mater. 53, 705 (2005).
12.Patnaik, M.N.M., Narasimhan, R., Ramamurty, U.: Spherical indentation response of metallic glasses. Acta Mater. 52, 3335 (2004).
13.Xing, L.Q., Li, Y., Ramesh, K.T., Li, J., Hufnagel, T.C.: Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B 64, 180201 (2001).
14.Sun, Y.F., Wei, B.C., Wang, Y.R., Li, W.H., Shek, C.H.: Enhanced plasticity of Zr-based bulk metallic glass matrix composite with ductile reinforcement. J. Mater. Res. 20, 2386 (2005).
15.Tabor, D.: Hardness of Metals (Oxford, Clarendon Press, 1951).
16.Johnson, K.L.: The correlation of indentation experiments. J. Mech. Phys. Solids 18, 115 (1970).
17.Ott, R.T., Sansoz, F., Molinari, J.F., Almer, J., Ramesh, K.T., Hufnagel, T.C.: Micromechanics of deformation of metallic-glass–matrix composites from in situ synchrotron strain measurements and finite element modeling. Acta Mater. 53, 1883 (2005).
18.Hufnagel, T.C., Cang, F.R., Ott, T.: Controlling shear band behavior in metallic glasses through microstructural design. Intermetallics 10, 1163 (2002).
19.McFadden, S.X., Mishra, R.S., Valiev, R.Z., Zhilyaev, A.P., Mukherjee, A.K.: Low temperature superplasticity in nanostructure nickel and metal alloys. Nature 398, 684 (1999).
20.Lewandowski, J.J., Greer, A.L.: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 (2006).

Keywords

Zr-Cu-Ni-Al-Ta glassy matrix composites with enhanced plasticity

  • Wenbo Dong (a1), Haifeng Zhang (a1), Wensheng Sun (a1), Aimin Wang (a1), Hong Li (a1) and Zhuangqi Hu (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed