Skip to main content Accessibility help

Quantitative analysis of thermal stability of CdSe/CdS core-shell nanocrystals under infrared radiation

  • A. Singha (a1) and Anushree Roy (a1)


Here, we report investigations on the instability in luminescence of bare (trioctylphosphine oxide [TOPO]-stabilized) and CdS-capped CdSe particles under infrared radiation. During thermal annealing under radiation, the formation of oxide layers on the surfaces of the particles create defect states. Consequently, there is a reduction in particle size. These two effects control the light output from the samples. We make a quantitative comparison of the stability of bare CdSe and core-shell-type CdSe-CdS particles during annealing under infrared radiation. Using diffusion theory, we show that the volume of the oxide layer, adhered to the crystallites, plays a dominant role in controlling the luminosity of the particles.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1.Jaiswal, J.K., Mattoussi, H., Mauro, J.M., Simon, S.M.: Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21, 47 (2003).
2.Lingerfelt, B.M., Mattoussi, H., Goldman, E.R., Mauro, J.M., Anderson, G.P.: Preparation of quantum dot-biotin conjugates and their use in immunochromatography assays. Anal. Chem. 75, 4043 (2003).
3.Goldman, E.R., Clapp, A.R., Anderson, G.P., Uyeda, H.T., Mauso, J.M., Medintz, I.L., Mattoussi, H.: Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal. Chem. 76, 684 (2004).
4.Peng, X.G., Schlamp, M.C., Kadavanich, A.V., Alivisatos, A.P.: Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019 (1997).
5.Jackson, J.B., Halas, N.J.: Silver nanoshells: Variations in morphologies and optical properties. J. Phys. Chem. B 105, 2743 (2001).
6.Lal, S., Taylor, R.N., Jackson, J.B., Westcott, S.L., Nordlander, P., Halas, N.J.: Light interaction between gold nanoshells plasmon resonance and planar optical waveguides. J. Phys. Chem. B 106, 5609 (2002).
7.Jackson, J.B., Westcott, S.L., Hirsch, L.R., West, J.L., Halas, N.J.: Controlling the surface enhanced Raman effect via the nanoshell geometry. Appl. Phys. Lett. 82, 257 (2003).
8.Hines, M.A., Guyot-Sionnest, P.: Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468 (1996).
9.Kortan, A.R., Hull, R., Opila, R.L., Bawendi, G.M., Steigerwald, M.L., Carroll, P.J., Brus, E.L.: Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media. J. Am. Chem. Soc. 112, 1327 (1990).
10.Tian, Y., Newton, T., Kotov, N.A., Guldi, D.M., Fendler, J.H.: Coupled composite CdS-CdSe and core-shell types of (CdS)CdSe and (CdSe)CdS nanoparticles. J. Phys. Chem. 100, 8927 (1996).
11.Manna, L., Scher, E.C., Li, L-S., Alivisatos, A.P.: Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. J. Am. Chem. Soc. 124, 7136 (2002).
12.Guo, W., Li, J.J., Wang, Y.A., Peng, X.: Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: Superior chemical, photochemical and thermal stability. J. Am. Chem. Soc. 125, 3901 (2003).
13.van Sark, W.G.J.H.M., Frederix, P.L.T.M., Van den Heuvel, D.J., Gerritsen, H.C., Bol, A.A., van Lingen, J.N.J., Mellodonrge, C.D., Meijerink, A.: Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room temperature time-resolved spectroscopy. J. Phys. Chem. B 105, 8281 (2001).
14.Aldana, J., Wang, Y., Peng, X.: Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 123, 8844 (2001).
15.Pradhan, N., Katz, B., Efrima, S.: Synthesis of high-quality metal sulfide nanoparticles from alkyl xanthate single precursors in alkylamine solvents. J. Phys. Chem. B 107, 13843 (2003).
16.Efros, A.L.L., Efros, A.L.: Interband absorption of light in a semiconductor sphere. Soviet Phys. Semicond. 16, 772 (1982).
17.Brus, L.E.: Electron–electron and electron–hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403 (1984).
18.Katari, J.E.B., Colvin, V.L., Alivisatos, A.P.: X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. J. Phys. Chem. 98, 4109 (1994).
19.Henglein, A.: Mechanism of reactions of colloidal microelectrodes and size quantization effects. Top. Curr. Chem. 143, 113 (1988).
20.Chestnoy, N., Harris, T.D., Hull, R., Brus, L.E.: Luminescence and photophysics of cadmium sulfide semiconductor clusters: the nature of the emitting electronic state. J. Phys. Chem. 90, 3393 (1986).
21.Signorini, L., Pasquini, L., Savini, L., Carboni, R., Boscherini, F., Bonetti, E., Giglia, A., Pedio, M., Mahne, N., Nannarone, S.: Size-dependent oxidation in iron/iron oxide core-shell nanoparticles. Phys. Rev. B 68, 195423 (2003).


Quantitative analysis of thermal stability of CdSe/CdS core-shell nanocrystals under infrared radiation

  • A. Singha (a1) and Anushree Roy (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed