Skip to main content Accessibility help

Powder characteristics and sintering behavior of Ag-doped YBa2Cu3O7−x produced by aerosol decomposition

  • Timothy L. Ward (a1), Toivo T. Kodas (a1), Altaf H. Carim (a1), Donald M. Kroeger (a2) and Huey Hsu (a2)...


YBa2Cu3O7−x (1-2-3) powders and 1-2-3 powders doped with 14 wt. % Ag (AgYBa2Cu3O7−x) were produced using aerosol decomposition of nitrate solutions. Powder produced at T > 900 °C consisted of submicron particles and had Tc ≍ 92 K in magnetic susceptibility measurements. As-produced Ag-doped powder was a composite of nearly phase-pure 1-2-3 and crystalline Ag (by x-ray diffraction) for reactor temperatures between 900 °C and 950 °C, whereas powder produced at T≥ 970 °C contained significant amounts of Y2BaCuO5 which were not found in 1-2-3 synthesis in the absence of Ag. This implied that the melting of Ag (∼960 °C) or the Ag-O eutectic (∼940 °C) promoted decomposition of 1-2-3 during powder synthesis. Dilatometry showed that 1-2-3 and Ag/1-2-3 powders densified rapidly between 800 °C and 875 °C, achieving nearly 90% of theoretical density after heating to 875 °C at 5 °C/min in air. Pellets of the Ag-doped powder were also sintered for 2-60 h at 895 °C in air. Scanning electron and optical microscopy revealed that Ag grains remained fine and uniformly distributed, varying in size from ∼1 μm after 2 h to 3–7 μm after 60 h, while 1-2-3 grains became plate-shaped with thicknesses of 1–5 μm and lengths of 10–30 μm after 60 h. Thus, the use of aerosol Ag /1-2-3 powders allows the use of lower processing temperatures and shorter times to produce dense ceramics with smaller Ag and 1-2-3 grain sizes than can be obtained using solid-state reaction routes.


Corresponding author

a)Author to whom correspondence should be addressed.
b)Present address: Ceramic Science and Engineering Program, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802.


Hide All
1.Pavuna, D., Berger, H., Affronte, M., Van der Maas, J., Capponi, J. J., Guillot, M., Lejay, P., and Tholence, J. L., Solid State Commun. 68 (6), 535 (1988).
2.Plechacek, V., Landa, V., Blazek, Z., Sneidr, J., Trejbalova, Z., and Cermak, M., Physica C 153–155, 878 (1988).
3.Dwir, B., Affronte, M., and Pavuna, D., Appl. Phys. Lett. 55 (4), 399 (1989).
4.Singh, J.P., Leu, H.J., Poeppel, R. B., Van Voorhees, E., Goudey, G.T., Winsley, K., and Shi, D., J. Appl. Phys. 66 (7), 3154 (1989).
5.Nishio, T., Itoh, Y., Ogasawara, F., Suganuma, M., Yamada, Y., and Mizutani, U., J. Mater. Sci. 24, 3228 (1989).
6.Prasad, R., Soni, N. C., Mohan, A., Khera, S. K., Nair, K. U., Gupta, C. K., Tomy, C.V., and Malik, S.K.,Mater. Lett. 7 (1–2), 9 (1988).
7.Hikichi, Y., Kato, M., Suzuki, S., Nomura, T., and Miyamoto, M., Jpn. J. Appl. Phys. 29 (9), L1615 (1990).
8.Lin, J.J., Chen, T-M., Yao, Y.D., Chen, J.W., and Gou, Y. S., Jpn. J. Appl. Phys. 29 (3), 497 (1990).
9.Imanaka, N., Saito, F., Imai, H., and Adachi, G-y., Jpn. J. Appl. Phys. Lett. 28 (4), L580 (1989).
10.Kozlowski, G., Maartense, I., Spyker, R., Leese, R., and Oberly, C. E., Physica C 173 195 (1991).
11.Routbort, J.L., Goretta, K. C., and Singh, J.P., in High-Temperature Superconductors: Fundamental Properties and Novel Materials Processing edited by Christen, D., Narayan, J., and Schneemeyer, L. (Mater. Res. Soc. Symp. Proc. 169, Pittsburgh, PA, 1990), p. 1247.
12.Ryelandt, L., Cassart, M., Vandenbosch, A., Delannay, F., and Issi, J-P., in High-Temperature Superconductors: Fundamental Properties and Novel Materials Processing edited by Christen, D, Narayan, J., and Schneemeyer, L. (Mater. Res. Soc. Symp. Proc. 169 Pittsburgh, PA, 1990), p. 1243.
13.Peterson, G. G., Weinberger, B. R., Lynds, L., and Krasinski, H.A., J. Mater. Res. 3, 605 (1988).
14.Ganapathi, L., Kumar, A., and Narayan, J., J. Appl. Phys. 66 (12), 5935 (1989).
15.Weinberger, B.R., Lynds, L., Potrepka, D.M., Snow, D. B., Burila, C.T., Eaton, H.E., Cipolli, R., Tan, Z., and Budnick, I., Physica C 161 91 (1989).
16.Tiefel, T. H., Jin, S., Sherwood, R. C., Davis, M. E., Kammlott, G. W, Gallagher, P.K., Johnson, D.W., Jr., Fastnacht, R.A., and Rhodes, W.W., Mater. Lett. 7 (11), 363 (1989).
17.Matsumoto, Y., Hombo, J., Yamaguchi, Y., Nishida, M., and Chiba, A., Appl. Phys. Lett. 56 (16), 1585 (1990).
18.Tsuchida, K., Miura, Y., Hiroyuki, T., and Kato, A., J. Less-Common Metals 146 L19 (1989).
19.Barba, M.F., Ortega, P., Saiz, E., and J.S. Moya, Mater. Lett. 10, 149 (1990).
20.Loehman, R. E., Tomsia, A. P., Pask, J. A., and Carim, A. H., Physica C 170, 1 (1990).
21.Hojaji, H., Barkatt, A., and Hein, R., Mater. Res. Bull. XXIII 869 (1988).
22.Blendell, J.E., Chiang, C. K., Cranmer, D.C., Freiman, S.W., Fuller, E. R., Jr., Drescher-Krasicka, E., Johnson, W. L., Ledbetter, H. M., Bennett, L. H., Swartzendruber, L. J., Marinenko, R. B., Myklebust, R. L., Bright, D. S., and Newbury, D. E., in Chemistry of High Temperature Superconductors, edited by Nelson, D. L., Whittingham, M. S., and George, T. F. (American Chemical Society, Washington, DC, 1987), p. 240.
23.McCallum, R.W., Verhoeven, J.D., and Bevolo, A.J., in High Temperature Superconductivity edited by Metzger, R. N. (Gordon and Breach, New York, 1989), p. 245.
24.Chu, C.T. and Dunn, B., J. Mater. Res. 5, 1819 (1990).
25.Shaw, T. M., Shinde, S. L., Dimos, D., Cook, R. F., Duncombe, P. R., and Kroll, C., J. Mater. Res. 4, 248 (1989).
26.Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics (John Wiley and Sons, New York, 1976).
27.Clarke, D. R., Shaw, T., and Dimos, D., J. Am. Ceram. Soc. 72 (7), 1103 (1989).
27.Kodas, T. T., Adv. Mater. 1 (6), 180 (1989).
29.Chadda, S., Ward, T.L., Kodas, T.T., Carim, A.H., Ott, K., and Kroeger, D., J. Aerosol Sci. 22 (5), 601 (1991).
30.Kodas, T., Datye, A., Lee, V., and Engler, E., J. Appl. Phys. 65 (5), 2149 (1989).
31.Carim, A.H., Doherty, P., and Kodas, T.T., in Superconductivity and Ceramic Superconductors, edited by Nair, K. M. and Geiss, E. A. (First International Ceramic Science and Technology Congress, Anaheim, CA, October 31-November 3, 1989) (American Chemical Society, Columbus, OH, 1990), p. 349.
32.Carim, A. H., Doherty, P., Kodas, T. T., and Ott, K., Mater. Lett. 8 (9), 335 (1989).
33.Odier, P., Dubois, B., Gervais, M., and Douy, A., Mater. Res. Bull. XXIV, 11 (1989).
34.Leary, K.J., Jacobson, H.W., Askew, T.R., and Flippen, R.B., J. Am. Ceram. Soc. 73 (4), 904 (1990).
35.Aselage, T. and Keefer, K., J. Mater. Res. 3, 1279 (1988).
36.Lay, K.W. and Renlund, G. M., J. Am. Ceram. Soc. 73 (5), 1208 (1990).
37.Wong-Ng, W., McMurdie, H.F., Paretzkin, B., Zhang, Y., Davis, K.L., Hubbard, C. R., Dragoo, A. L., and Stewart, J. M., Powder Diffraction 2 (3), 192 (1987).
39.Specht, E. D., Sparks, C. J., Dhere, A. G., Brynestad, J., Cavin, O. B., Kroeger, D. M., and Oye, H.A., Phys. Rev. B 37 (13), 7426 (1988).
39.Krstic, V. V. and Nicholson, P. S., J. Am. Ceram. Soc. 64 (9), 499 (1981).
40.Hasselman, D. P. H. and Fulrath, R. M., J. Am. Ceram. Soc. 49 (2), 68 (1966).
41.Lee, S.Y., Ko, J.W., Kim, H.D., and Chung, H.S., Jpn. J. Appl. Phys. 30 (1), 43 (1991).

Powder characteristics and sintering behavior of Ag-doped YBa2Cu3O7−x produced by aerosol decomposition

  • Timothy L. Ward (a1), Toivo T. Kodas (a1), Altaf H. Carim (a1), Donald M. Kroeger (a2) and Huey Hsu (a2)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed