Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-30T16:54:24.421Z Has data issue: false hasContentIssue false

Microstructure of melt-processed Bi2Sr2CaCu2Oy and reaction mechanisms during post heat treatment

Published online by Cambridge University Press:  31 January 2011

B. Heeb
Affiliation:
Nichtmetallische Werkstoffe, ETH Zürich, CH-8092 Zürich, Switzerland
S. Oesch
Affiliation:
Nichtmetallische Werkstoffe, ETH Zürich, CH-8092 Zürich, Switzerland
P. Bohac
Affiliation:
Nichtmetallische Werkstoffe, ETH Zürich, CH-8092 Zürich, Switzerland
L.J. Gauckler
Affiliation:
Nichtmetallische Werkstoffe, ETH Zürich, CH-8092 Zürich, Switzerland
Get access

Abstract

Phase compositions and microstructures of melt processed 2212 were studied. 2212 starting powder was cooled from temperatures between 910 °C and 1100 °C in air at rates ranging from 350 K/min to 0.083 K/min. The solidification sequence was established for all cooling rates. Under all conditions the Bi-free (Sr, Ca)CuO2 (01x1) is the primary phase. The one-layer solid solution 11905 nucleates on this phase. The residual liquid solidifies to a glassy state, decomposes into the eutectic of Cu2O and Bi2Sr2.1Ca0.9Ox, or reacts with the primary phase and the 11905 forming 2212 at high, intermediate, or low cooling rates, respectively. Post solidification heat treatment at 850 °C in air leads to partial remelting. The Cu-rich liquid reacts with 11905 and 01x1 forming 2212. Subsequent solid/solid reactions lead to a high volume fraction of 2212 with almost ideal 2 : 2 : 1 : 2 stoichiometry.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Jin, S., JOM (March), 7–12 (1991).Google Scholar
2Tenbrink, J., Wilhelm, M., Heine, K., and Krauth, H., IEEE Trans. Mag. 27 (2), 12391246 (1991).CrossRefGoogle Scholar
3Nishino, J., Murakami, H., Yaegashi, S., and Shiohara, Y., J. Ceram. Soc. Jpn. Int. Ed., 98 (11), 411 (1990).Google Scholar
4Rayne, R.J., Toth, L.E., Bender, B.A., Lawrence, S.H., Miller, M.M., Soulen, R.J. Jr., and Candella, G., J. Mater. Res. 6, 467472 (1991).CrossRefGoogle Scholar
5Bock, J. and Preisler, E., “Melt Processing of Bi-HTC Superconductors: The Significance of Oxygen for Formation and Properties”, Proceedings of the ICMC '90 Topical Conference “High Temperature Superconductors, Materials Aspects”, May 9–11, 1990 in Garmisch-Partenkirchen (Germany).Google Scholar
6Kase, J., Togano, K., Kumakura, H., Dietderich, D. R., Irisawa, N., Morimoto, T., and Maeda, H., Jpn. J. Appl. Phys. Lett. 29 (7), L1096–L1099 (1990).CrossRefGoogle Scholar
7Dietderich, D.R., Ullmann, B., Freyhardt, H. C., Kase, J., Kumakura, H., Togano, K., and Maeda, H., Jpn. J. Appl. Phys. Lett. 29 (7), L1100–L1103 (1990).CrossRefGoogle Scholar
8Brenner, J. M., Feigelson, R. S., Gazit, D., and Peszkin, P. N., Mater. Sci. Eng. B5 (3), 351357 (1990).CrossRefGoogle Scholar
9Gazit, D., Peszkin, P.N., Moulton, L.V., and Feigelson, R.S., J. Cryst. Growth 98, 545549 (1989).CrossRefGoogle Scholar
10Oka, Y., Yamamoto, N., Tomii, Y., Kitaguchi, H., Oda, K., and Takada, J., Jpn. J. Appl. Phys. Lett. 28 (5), L801–L803 (1989).CrossRefGoogle Scholar
11II, R. D. Ray and Hellstrom, E. E., Physica C 175, 255260 (1991).Google Scholar
12Nakagawa, M. and Shiohara, Y., Advances in Superconductivity II, edited by Ishiguro, T. and Kajimura, K. (Springer-Verlag, Tokyo, 1990), pp. 317320.CrossRefGoogle Scholar
13Izumi, T., Oyama, T., and Shiohara, Y., Advances in Superconductivity II, edited by Ishiguro, T. and Kajimura, K. (Springer-Verlag, Tokyo, 1990), pp. 289292.CrossRefGoogle Scholar
14Shiohara, Y., Nakagawa, M., Suga, T., Ishige, K., Oyama, T., Izumi, T., Nagaya, S., Miyajima, M., Hirabayashi, I., and Tanaka, S., Advances in Superconductivity II, edited by Ishiguro, T. and Kajimura, K. (Springer-Verlag, Tokyo, 1990), pp. 263268.CrossRefGoogle Scholar
15Cima, M. J., Jiang, X. P., Chow, H. M., Haggerty, J. S., Flemings, M. C., Brody, H. D., Laudise, R. A., and Johnson, D.W., J. Mater. Res. 5, 18341849 (1990).CrossRefGoogle Scholar
16Takekawa, S., Nozaki, H., Umezono, A., Kosuda, K., and Kobayashi, M., J. Cryst. Growth 92, 687690 (1988).CrossRefGoogle Scholar
17Prieto, P., Zorn, G., Arons, R.R., Thierffeldt, S., Gomez, M.E., Kabius, B., Sybertz, W., and Urban, G., Solid State Commun. 69 (3), 235240 (1989).CrossRefGoogle Scholar
18Chow, H. M., Jiang, X. P., Cima, M. J., Haggerty, J. S., Brody, H. D., and Flemings, M.C., J. Am. Ceram. Soc. 74 (6), 13911396 (1991).CrossRefGoogle Scholar
19Kubo, Y., Michishita, K., Higashida, Y., Mizumo, M., Yokoyama, H., Shimizu, N., Inukai, E., Kuroda, N., and Yoshida, H., Jpn. J. Appl. Phys. Lett. 28 (4), L606–L608 (1989).CrossRefGoogle Scholar
20Underwood, E. E., Quantitative Stereology (Addison-Wesley Publishing Corp., Reading, MA, 1970).Google Scholar
21Piope, M. I., Differential Thermal Analysis–A Guide to the Technique and Its Applications (Heyden & Son Ltd., London, 1977), p. 33.Google Scholar
22II, R. D. Ray and Hellstrom, E. E., Physica C 172, 435440 (1991).Google Scholar
23Hong, B.S. and Mason, T.O., J. Am. Ceram. Soc. 74 (5), 10451052 (1991).CrossRefGoogle Scholar
24Schulze, K., Majewski, P., Hettich, B., and Petzow, G., Z. Metallkde. 81 (11), 836842 (1990).Google Scholar
25Suzuki, R.O., Kambara, S., Tsuchida, H., Shimizu, K., and Ono, K., Advances in Superconductivity II, edited by Ishiguro, T. and Kajimura, K. (Springer-Verlag, Tokyo, 1990), pp. 235238.CrossRefGoogle Scholar
26Phase Diagrams for Ceramists, Nat. Bur. Stand., Am. Ceram. Soc. VI, No. 6427, 136 (1987).Google Scholar
27Hong, B., Hahn, J., and Mason, T. O., J. Am. Ceram. Soc. 73 (7), 1965 (1990).CrossRefGoogle Scholar