Skip to main content Accessibility help
×
Home

Microstructural examination in high-strain-rate superplastically deformed tetragonal ZrO2 dispersed with 30 vol% MgAl2O4 spinel

  • Koji Morita (a1), Keijiro Hiraga (a1), Byung-Nam Kim (a1) and Yoshio Sakka (a1)

Abstract

The role of MgAl2O4 spinel particle dispersion for attaining high-strain-rate superplasticity (HSRS) was examined in tetragonal ZrO2. Microstructural examination shows that the dispersed spinel particles provide the following positive factors to ZrO2 simultaneously: (i) stable fine grain size by retarding grain growth due to pinning effect; and (ii) enhanced accommodation due to accelerated lattice diffusivity caused by the dissolution of aluminum and magnesium into ZrO2 from the spinel particles, and accelerated relaxation of stress concentrations exerted by grain boundary sliding through dislocation motion. These positive factors make it possible to attain HSRS in ZrO2.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: MORITA.Koji@nims.go.jp

References

Hide All
1Chokshi, A.H., Mukherjee, A.K., and Langdon, T.G.: Superplasticity in advanced materials. Mater. Sci. Eng., R 10, 237 (1993).
2Nieh, T.G., Wadsworth, J., and Sherby, O.D.: Superplasticity in Metals and Ceramics Cambridge University Press, 1997.
3Wakai, F., Sakaguchi, S., and Matsuno, Y.: Superplasticity of yttria-stabilized tetragonal ZrO2 polycrystals. Adv. Ceram. Mater. 1, 259 (1986).
4Nieh, T.G., McNally, C.M., and Wadsworth, J.: Superplastic behavior of a yttria-stabilized tetragonal zirconia polycrystal. Scripta Mater. 22, 1297 (1988).
5Nieh, T.G. and Wadsworth, J.: Effect of grain-size on superplastic behavior of Y-TZP. Scripta Mater. 24, 763 (1990).
6Nieh, T.G. and Wadsworth, J.: Superplastic behavior of a fine-grained, yttria-stabilied tetragonal zirconia polycrystal (Y-TZP). Acta Mater. 38, 1121 (1990).
7Schissler, D.J., Chokshi, A.H., Nieh, T.G., and Wadsworth, J.: Microstructural aspects of superplastic tensile deformation and cavitation failure in a fine-grained yttria stabilized tetragonal zirconia. Acta Mater. 39, 3227 (1991).
8Kondo, T., Takigawa, Y., Ikuhara, Y., and Sakuma, T.: Critical assessments of tensile ductility in superplastic TZP and TiO2-doped Y-TZP. Mater. Trans., JIM 39, 1108 (1998).
9Kajihara, K., Yoshizawa, Y., and Sakuma, T.: The enhancement of superplastic flow in tetragonal zirconia polycrystals with SiO2-doping. Acta Mater. 43, 1235 (1995).
10Dillon, R.P., Sosa, S.S., and Mecartney, M.L.: Achieving tensile superplasticity in 8 mol% Y2O3 cubic stabilized ZrO2 through the addition of intergranular silica. Scripta Mater. 50, 1441 (2004).
11Wakai, F.: A review of superplasticity in ZrO2-toughened ceramics. Br. Ceram. Trans. 88, 205 (1989).
12Wakai, F. and Kato, H.: Superplasticity of TZP/Al2O3 composite. Adv. Ceram. Mater. 3, 71 (1988).
13Nieh, T.G. and Wadsworth, J.: Superplasticity in fine-grained 20% Al2O3/YTZ composite. Acta Mater. 39, 3037 (1991).
14Chokshi, A.H., Nieh, T.G., and Wadsworth, J.: Role of concurrent cavitation in the fracture of a superplastic zirconia-alumina composite. J. Am. Ceram. Soc. 74, 869 (1991).
15Nakano, K., Suzuki, T.S., Hiraga, K., and Sakka, Y.: Superplastic tensile ductility enhanced by grain size refinement in a zirconia-dispersed alumina. Scripta Mater. 38, 33 (1998).
16Kim, B-N., Hiraga, K., Morita, K., and Sakka, Y.: Superplasticity in alumina enhanced by co-dispersion of 10% zirconia and 10% spinel particles. Acta Mater. 49, 887 (2001).
17Sharif, A.A. and Mecartney, M.L.: Superplasticity in cubic yttria stabilized zirconia with 10 wt% alumina. J. Eur. Ceram. Soc. 24, 2041 (2004).
18Yoon, C.K. and Chen, I.W.: Superplastic flow of two-phase ceramics containing rigid inclusions-zirconia/mullite composite. J. Am. Ceram. Soc. 73, 1555 (1990).
19Kim, B-N., Hiraga, K., Morita, K., and Sakka, Y.: A high-strain-rate superplastic ceramics. Nature 413, 288 (2001).
20Kim, B-N., Hiraga, K., Morita, K., Sakka, Y., and Yamada, T.: Enhanced tensile ductility in ZrO2-Al2O3-spinel composite ceramic. Scripta Mater. 47, 775 (2002).
21Morita, K., Hiraga, K., and Sakka, Y.: High-strain-rate superplasticity in Y2O3-stabilized tetragonal ZrO2 dispersed with 30 vol% MgAl2O4 spinel. J. Am. Ceram. Soc. 85, 1900 (2002).
22Morita, K., Kim, B-N., Hiraga, K., and Sakka, Y.: High-strain-rate superplasticity in 3Y-TZP dispersed with 30 vol% spinel particle. Mater. Sci. Forum 447–448, 329 (2004).
23Hiraga, K., Nakano, K., Suzuki, T.S., and Sakka, Y.: Processing-dependent microstructural factors affecting cavitation damage and tensile ductility in a superplastic alumina with zirconia. J. Am. Ceram. Soc. 85, 2763 (2002).
24Wurst, J.C. and Nelson, J.A.: Lineal intercept technique for measuring grain size in two-phase polycrystalline ceramics. J. Am. Ceram. Soc. 55, 109 (1972).
25Grain, C.F.: Phase relations in the ZrO2-MgO system. J. Am. Ceram. Soc. 50, 288 (1967).
26Suzuki, T.S., Sakka, Y., Morita, K., and Hiraga, K.: Enhanced superplasticity in a alumina-containing zirconia prepared by colloidal processing. Scripta Mater. 43, 705 (2000).
27Nishizawa, T.: Grain growth in single- and dual-phase steels. Tetsu to Hagane 70, 194 (1984).
28Zhao, J., Ikuhara, Y., and Sakuma, T.: Grain growth of silica-added zirconia annealed in the cubic/tetragonal two-phase region. J. Am. Ceram. Soc. 81, 2087 (1998).
29Nieh, T.G. and Wadsworth, J.: Dynamic grain growth during superplastic deformation of yttria-stabilized tetragonal zirconia polycrystals. J. Am. Ceram. Soc. 72, 1469 (1989).
30Langdon, T.G.: The mechanical-properties of superplastic materials. Metall. Trans. 13A, 689 (1982).
31Kim, W.J., Wadsworth, J., and Sherby, O.D.: Tensile ductility of superplastic ceramics and metallic alloys. Acta Mater. 39, 199 (1991).
32Morita, K. and Hiraga, K.: Deformed substructures in fine-grained tetragonal zirconia. Philos. Mag. Lett. 81, 311 (2001).
33Swaroop, S., Kilo, M., Argirusis, C., Borchardt, G., and Chokshi, A.H.: Lattice and grain-boundary diffusion in 3YTZP analyzed using SIMS. Acta Mater. 53, 4975 (2005).
34Hellman, P. and Hillert, M.: On the effect of second-phase particles on grain growth. Scand. J. Metall. 4, 211 (1975).
35Kim, B-N.: Modeling grain growth behavior inhibited by dispersed particles. Acta Mater. 49, 543 (2001).
36Okada, K., Yoshizawa, Y., and Sakuma, T.: Grain-size distribution in Al2O3-ZrO2 generated by high-temperature annealing. J. Am. Ceram. Soc. 74, 2820 (1991).
37Wakai, F., Kodama, Y., and Nagano, T.: Superplasticity of ZrO2 polycrystals. Jpn. J. Appl. Phys. 28, 69 (1989).
38Morita, K. and Hiraga, K.: Reply to “Comment on the role of intragranular dislocations in superplastic yttria-stabilized zirconia.” Scripta Mater. 48, 1403 (2003).
39Rachinger, W.A.: Relative grain translations in the plastic flow of aluminum. J. Inst. Met. 81, 33 1952-1953.
40Owen, D.M. and Chokshi, A.H.: The high temperature mechanical characteristics of superplastic 3 mol% yttria stabilized zirconia. Acta Mater. 46, 667 (1998).
41Jiménez-Melendo, M., Domínguez-Rodríguez, A., and Bravo-León, A.: Superplastic flow of fine-grained yttria-stabilized zirconia polycrystals: Constitutive equation and deformation mechanisms. J. Am. Ceram. Soc. 81, 2761 (1998).
42Morita, K. and Hiraga, K.: Critical assessment of high-temperature deformation and deformed microstructure in high-purity tetragonal zirconia containing 3 mol% yttria. Acta Mater. 50, 1075 (2002).
43Addad, A., Crampon, J., Guinebretière, R., Dauger, A., and Duclos, R.: Grain boundary sliding-induced deformation in a 30 wt% zirconia-spinel composite: Influence of stress. J. Eur. Ceram. Soc. 20, 2063 (2000).
44Duclos, R., Crampon, J., and Carry, C.: Grain-boundary sliding and accommodation mechanism during creep of yttria-partially-stabilized zirconia. Philos. Mag. Lett. 82, 529 (2002).
45Addad, A., Crampon, J., Guinébretiere, R., Dauger, A., and Duclos, R.: Grain boundary sliding-induced deformation in a 30 wt% zirconia-spinel composite: influence of stress. J. Eur. Ceram. Soc. 20, 2063 (2000).
46Morita, K., Kim, B-N., Hiraga, K., and Sakka, Y.: A threshold stress for the superplastic deformation in Y2O3-stabilized tetragonal ZrO2. Mater. Sci. Eng., A 387–389, 655 (2004).
47Cheong, D.S., Domínguez-Rodríguez, A., and Heuer, A.H.: High-temperature plastic deformation of Y2O3-Stabilized ZrO2 single crystals III. Variation in work hardening between 1200 and 1500 °C. Philos. Mag. A 63, 377 (1991).
48Donlon, W.T., Mitchell, T.E., and Heuer, A.H.: Work softening in stoichiometric spinel (MgAl2O4). Philos. Mag. A 45, 1013 (1982).
49Hwang, C-M.J. and Chen, I-W.: Effect of a liquid phase on superplasticity of 2-mol%-Y2O3-stabilized tetragonal zirconia polycrystals. J. Am. Ceram. Soc. 73, 1626 (1990).
50Charit, I. and Chokshi, A.H.: Experimental evidence for diffusion creep in the superplastic 3 mol% yttria-stabilized tetragonal zirconia. Acta Mater. 49, 2239 (2001).
51Morita, K., Kim, B-N., Hiraga, K., and Sakka, Y.: Yield drop in high-strain-rate superplastic deformation of ZrO2-30vol%MgAl2O4 spinel composite. Philos. Mag. Lett. 83, 533 (2003).
52Mimurada, J., Nakano, M., Sasaki, K., Ikuhara, Y., and Sakuma, T.: Effect of cation doping on the superplastic flow in yttria-stabilized tetragonal zirconia polycrystals. J. Am. Ceram. Soc. 84, 1817 (2001).
53Sato, E., Morioka, H., Kuribayashi, K., and Sundarereman, D.: Effect of small amount of alumina doping on superplastic behavior of tetragonal zirconia. J. Mater. Sci. 34, 4551 (1999).
54Satou, T., Hosaka, F., Sato, E., Matsushita, J., Otsuka, M., and Kuribayashi, K.: Superplastic deformation behavior of undoped and doped high-purity 3Y-TZP. Mater. Sci. Forum 357–359, 117 (2001).
55Yoshida, H., Okada, K., Ikuhara, Y., and Sakuma, T.: Improvement of high-temperature creep resistance in fine-grained Al2O3 by Zr4+ segregation in grain boundaries. Philos. Mag. Lett. 76, 9 (1997).
56Wakai, F., Nagano, T., and Iga, T.: Hardening in creep of alumina by zirconium segregation at the grain boundary. J. Am. Ceram. Soc. 80, 2361 (1997).
57Owen, D.M. and Chokshi, A.H.: The constant stress tensile creep behavior of a superplastic zirconia-alumina composite. J. Mater. Sci. 29, 5467 (1994).
58Morita, K., Hiraga, K., and Kim, B.-N.: to be submitted.
59Chokshi, A.H., Yoshida, H., Ikuhara, Y., and Sakuma, T.: The influence of trace elements on grain boundary processes in yttria-stabilized tetragonal zirconia. Mater. Lett. 57, 4196 (2003).
60Yang, S-Y., Lee, J-H., Kim, J-J., and Lee, J-S.: Sintering behavior of Y-doped ZrO2 ceramics: The effect of Al2O3 and Nd2O5 addition. Solid State Ionics 172, 413 (2004).
61Owen, D.M., Chokshi, A.H., and Nutt, S.T.: Nucleation and growth characteristics of cavities during the early stage of tensile creep deformation in a superplastic zirconia-20 wt% alumina composite. J. Am. Ceram. Soc. 80, 2433 (1997).
62Donlon, W.T., Heuer, A.H., and Mitchell, T.E.: Compositional softening in Mg-Al spinel. Philos. Mag. 78, 615 (1998).
63Hiraga, K., Kim, B-N., Morita, K., Suzuki, T.S., and Sakka, Y.: Microstructural design for high-strain-rate superplastic oxide ceramics. J. Ceram. Soc. Japan 113, 191 (2005).

Keywords

Microstructural examination in high-strain-rate superplastically deformed tetragonal ZrO2 dispersed with 30 vol% MgAl2O4 spinel

  • Koji Morita (a1), Keijiro Hiraga (a1), Byung-Nam Kim (a1) and Yoshio Sakka (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed