Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-24T12:13:38.289Z Has data issue: false hasContentIssue false

Microstructural engineering through donor and acceptor doping in the grain and grain boundary of a polycrystalline semiconducting ceramic

Published online by Cambridge University Press:  31 January 2011

Tapan K. Gupta
Affiliation:
Alcoa Technical Center, 100 Technical Drive, Alcoa Center, Pennsylvania 15069-0001
Get access

Abstract

This paper deals with the concept of microstructural engineering through donor and acceptor dopings within the grain and at the grain boundary of a polycrystalline semiconducting ceramic. These concepts are derived from an analysis of the “prebreakdown” and the “upturn” current-voltage characteristics of a ZnO varistor and from the construction of corresponding defect models as a function of donor and acceptor dopants at the grain and grain boundary. By using Li, Al, and Na as dopants, it is shown that the dopants can be grain or grain boundary specific in the ZnO microstructure and that they can act as donors, acceptors, or both, depending on the nature and concentration of dopants and their location on the host crystal lattice structure. In the case of the ZnO varistor, the grain and grain boundary properties can thus be tuned independently or concurrently by systematic engineering of the entire microstructure through defect dopings that are specific to the grain, grain boundary, or both. Following a detailed analysis of the defect models thus developed for the ZnO varistor, a set of ground rules are proposed for applying these concepts of donor and acceptor dopings at the grain and grain boundary to the general case of microstructural engineering in a polycrystalline semiconducting ceramic.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Balluffi, R.W., MRS Bull. XVI (2), 23 (1991).CrossRefGoogle Scholar
2Kingery, W.D., J. Am. Ceram. Soc. 57 (1), 18 (1974).CrossRefGoogle Scholar
3Yan, M.F., Cannon, R.M., and Bowen, H.K., J. Appl. Phys. 54 (2), 764778 (1983).CrossRefGoogle Scholar
4Chiang, Y. -M. and Takagi, T., J. Am. Ceram. Soc, Parts I and II 73 (11), 32783291 (1990).CrossRefGoogle Scholar
5Wang, Da Yu and Umeya, K., J. Am. Ceram. Soc. 73 (6), 1574 (1990); 74 (2), 280 (1991).CrossRefGoogle Scholar
6Desu, S. B. and Payne, D. A., J. Am. Ceram. Soc, Parts I-IV, 73 (11), 33913421 (1990).CrossRefGoogle Scholar
7Gupta, T. K. and Carlson, W. G., J. Mater. Sci. 20, 3487 (1985).Google Scholar
8Merkle, K. L. and Wolf, D., MRS Bull. XV (9), 42 (1990).CrossRefGoogle Scholar
9Foiles, S.M. and Seidman, D.N., MRS Bull. XV (9), 51 (1990).CrossRefGoogle Scholar
10Briant, C.L., MRS Bull. XV (10), 26 (1990).CrossRefGoogle Scholar
11Norton, M.G. and Carter, C.B., MRS Bull. XV (10), 51 (1990).Google Scholar
12Cheng, H.F., J. Appl. Phys. 56, 1831 (1984).CrossRefGoogle Scholar
13Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., in Introduction to Ceramics (John Wiley and Sons, New York, 1976), pp. 239257.Google Scholar
14Ibid., pp. 190–204.Google Scholar
15Duffy, D. M. and Tasker, P. W., J. Appl. Phys. 56 (4), 971 (1984).CrossRefGoogle Scholar
16Einzinger, R., Grain Boundaries in Semiconductors, edited by Leamy, H. J., Pike, G. E., and Seager, C. H. (Elsevier, New York, 1982), pp. 343355.Google Scholar
17Kliewer, K.L. and Koehler, J.S., Phys. Rev. 140 (4A), 1226 (1965).Google Scholar
18Pike, G. E. and Seager, C. H., J. Appl. Phys. 50 (5), 3414 (1979).Google Scholar
19Balluffi, R. W., in Diffusion in Crystalline Solids (Academic Press, Inc., San Diego, CA, 1984), pp. 319377.Google Scholar
20Gupta, T. K. and Miller, A. C., J. Mater. Res. 3, 745 (1988).Google Scholar
21Gupta, T.K. and Straub, W.D., J. Appl. Phys., Parts I & II, 68 (2), 845855 (1990).CrossRefGoogle Scholar
22Rohatgi, A, Pang, S.K., Gupta, T.K., and Straub, W.D., J. Appl. Phys. 63 (11), 5375 (1988).CrossRefGoogle Scholar
23Gupta, T.K., Straub, W.D., Ramanchalam, M.S., Schaffer, J.P., and Rohatgi, A., J. Appl. Phys. 66 (12), 61326137 (1989).Google Scholar
24Ramanchalam, M. S., Rohatgi, A., Schaffer, J. P., and Gupta, T. K., J. Appl. Phys. 69 (12), 83808386 (1991).CrossRefGoogle Scholar
25Gupta, T.K., in Materials and Processes for Microelectronic Systems, Ceramic Transactions, edited by Nair, K. M., Pohenka, R., and Buchanan, R. C. (Am. Ceram. Soc, Westerville, OH, 1990), Vol. 15, pp. 711727.Google Scholar
26Gupta, T. K., in Tailoring Multiphase and Composite Ceramics, edited by Tressler, R. E., Messing, G. L., and Newnham, R. E. (Plenum Press, New York, 1986), pp. 493507.CrossRefGoogle Scholar
27Olsson, E. and Dunlap, G.L., J. Appl. Phys. 66 (8), 36663675 (1989).CrossRefGoogle Scholar
28Tao, M., Ai, B., Dorlanne, O., and Loubiere, A., J. Appl. Phys. 61 (4), 1562 (1987).CrossRefGoogle Scholar
29Gupta, T.K., J. Am. Ceram. Soc. 73 (7), 18171840 (1990).Google Scholar
30Miyoshi, T., Maeda, K., Takahashi, K., and Yamazaki, T., in Advances in Ceramics, edited by Levinson, L. M. (Am. Ceram. Soc, Westerville, OH, 1981), Vol. 1, p. 309.Google Scholar
31Carlson, W.G. and Gupta, T.K., J. Appl. Phys. 53, 57465753 (1982).CrossRefGoogle Scholar
32Gupta, T.K., Ferroelectrics 102, 391396 (1990).CrossRefGoogle Scholar
33Gupta, T.K., in Engineered Materials Handbook, Vol. 4: Ceramics and Glasses, to be published by ASM (1991).Google Scholar
34Kroger, F. A., The Chemistry of Imperfect Crystals (John Wiley, New York, 1964), p. 708.Google Scholar
35Lander, J.J., J. Phys. Chem. Solids 15, 324 (1960).CrossRefGoogle Scholar
36Rudolph, J., Z. Naturf. 14a, 727 (1958).Google Scholar
37Neumark, G. F., J. Appl. Phys. 51 (6), 3383 (1980).CrossRefGoogle Scholar
38Selim, F. A., Gupta, T. K., Hower, P. L., and Carlson, W. G., J. Appl. Phys. 51 (1), 765 (1980).Google Scholar
39Takata, M., Tsubone, D., and Yanagida, H., J. Am. Ceram. Soc. 59 (1–2), 4–8 (1976).CrossRefGoogle Scholar
40Minami, T., Nanto, H., and Takata, S., Jpn. J. Appl. Phys. 23 (5), 280–282 (1984).Google Scholar
41Bhargava, R.N., Seymour, R.J., Fitzpatrick, B. J., and Kerko, S.P., Phys. Rev. B 20 (6), 2407 (1979).Google Scholar