Skip to main content Accessibility help
×
Home

Mechanical Stress, Grain-boundary Relaxation, and Oxidation of Sputtered CuNi(Mn) Films

  • W. Brückner (a1), W. Pitschke (a1), S. Baunack (a1) and J. Thomas (a1)

Abstract

This paper focuses on understanding stress development in CuNi42Mn1 thin films during annealing in Ar. In addition to stress-temperature measurements, resistance-temperature investigations and chemical and microstructural characterization by Auger electron spectroscopy, scanning and transmission electron microscopy, x-ray diffraction, and atomic force microscopy were also carried out. The films are polycrystalline with a grain size of 20 nm up to 450 °C. To explain the stress evolution above 120 °C, atomic rearrangement (excess-vacancy annihilation, grain-boundary relaxation, and shrinkage of grain-boundary voids) and oxidation were considered. Grain-boundary relaxation was found to be the dominating process up to 250–300 °C. A sharp transition from compressive to tensile stress between 300 and 380 °C is explained by the formation of a NiO surface layer due to reaction with the remaining oxygen in the Ar atmosphere. This oxidation is masking the inherent structural relaxation above 300 °C.

Copyright

References

Hide All
1.Nishino, I., Ichinose, Y., Sorimachi, Y., and Tsubata, I., Int. J. Hybrid Microelectronics 8, 18 (1985).
2.Brückner, W., Baunack, St., Elefant, D., and Reiss, G., J. Appl. Phys. 79, 8516 (1996).
3.Kiyokawa, H., Yonezawa, S., Horita, K., Unishi, T., and Takashima, M., Denki Kagaku 63, 648 (1995).
4.Berlicki, T. H., Osadnik, S. J., and Prociow, E. L., Vide Sci. Tech. Appl. (France) 279 suppl., 221 (1996).
5.Informationsdruck, Kupfer-Nickel-Legierungen Eigenschaften, Bearbeitung, Anwendung (Deutsches Kupfer-Institut, Düsseldorf, Germany, 1992), p. 2.
6.Brückner, W., Edelmann, J., Vinzelberg, H., Reiss, G., and Knuth, Th., Thin Solid Films 280, 227 (1996).
7.Brückner, W., Baunack, St., Reiss, G., Leitner, G., and Knuth, Th., Thin Solid Films 258, 252 (1995).
8.Brückner, W., Macionczyk, F., and Reiss, G., in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W.W., Gao, H., Sundgren, J-E., and Baker, S. P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 47.
9.Doerner, M. F. and Nix, W. D., CRC Crit. Rev. Solid State Mater. Sci. 14, 225 (1988).
10.Venkatraman, R., in Materials Reliability in Microelectronics IV, edited by Børgesen, P., Coburn, J. C., Sanchez, J. E. Jr, Rodbell, K. P., and Filter, W.F. (Mater. Res. Soc. Symp. Proc. 338, Pittsburgh, PA, 1994), p. 215.
11.Bader, S., Kalaugher, E. M., and Arzt, E., Thin Solid Films 263, 175 (1995).
12.Thouless, M. D., Gupta, J., and Harper, J.M. E., J. Mater. Res. 8, 1845 (1993).
13.Stoney, G. G., Proc. Roy. Soc. (London) A 82, 172 (1909).
14.Brückner, W., Sobe, G., Grieβmann, H., Baunack, St., and Reiss, G., Thin Solid Films 261, 90 (1995).
15.Warren, B.E. and Averbach, B. L., Acta Metall. 1, 22 (1953).
16.Gaarenstrom, S.W., Appl. Surf. Sci. 7, 7 (1981).
17.Brückner, W., Phys. Status Solidi A 148, K89 (1995).
18.Svensson, B., Ann. Phys. (Leipzig) 25, 263 (1936).
19.Iguchi, E. and Udagawa, K., J. Phys. F 5, 215 (1975).
20.Maniguet, L., Ignat, M., Dupeux, M., Bacmann, J.J., and Ph. Normandon, in Materials Reliability in Microelectronics III, edited by Rodbell, K.P., Filter, W. F., Frost, H.J., and Ho, P.S. (Mater. Res. Soc. Symp. Proc. 309, Pittsburgh, PA, 1993), p. 217.
21.Kohlrausch, F., Praktische Physik (B. G. Teubner, Stuttgart, 1996), Vol. 3, p. 22.
22.Mizushima, I., Chikazawa, M., and Watanabe, T., J. Electrochem. Soc. 143, 1978 (1966).
23.Owen, E.A. and Pickup, L., Z. Krist. A 88, 116 (1934).
24.Coles, B.R., J. Inst. Met. 84, 346 (1956).
25.Barber, Z.H. and Somekh, R.E., Vacuum 34, 991 (1984).
26.Brückner, W., Schumann, J., Baunack, St., Pitschke, W., and Knuth, Th., Thin Solid Films 258, 236 (1995).
27.Tsuji, K. and Hirokawa, K., Surf. Interface Anal. 17, 819 (1991).
28.Souchet, R., Lenglet, M., Miche, P., Weber, S., and Scherrer, S., Analysis Lett. 21, 173 (1993).
29.Druska, P. and Strehblow, H-H., Surf. Interface Anal. 23, 440 (1995).
30.Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).
31.Ke, M., Hackney, S. A., Milligan, W.W., and Aifantis, E. C., Nano-Structured Mater. 5, 689 (1995).
32.Massalski, Th.B., Binary Alloy Phase Diagrams (ASM INTERNATIONAL, Materials Park, OH, 1990), Vol. 2, p. 1442.
33.Vollertsen, F. and Vogler, S., Werkstoffeigenschaften und Mikrostruktur (Carl Hanser Verlag, München, Wien, Germany, 1989), p. 279.
34.Lloyd, J. R. and Nakahara, S., Thin Solid Films 45, 411 (1977).
35.Trusov, L.I., Novikov, V. I., Repin, I. A., Kazilin, E.E., and Ganelin, V. J., Metallofizika 10, 104 (1988).
36.Siegel, R.W., Philos. Mag. 13, 359 (1966).
37.Lloyd, J. R. and Nakahara, S., J. Electrochem. Soc. 125, 2037 (1978).
38.Hoffman, R.W., Thin Solid Films 34, 185 (1976).
39.Vollertsen, F. and Vogler, S., Werkstoffeigenschaften und Mikrostruktur (Carl Hanser Verlag, München, Wien, Germany, 1989), p. 204.
40.Brown, W.F. Jr, Trans. Soc. Rheol. 9, 357 (1965).
41.Gupta, D. and Ho, P. S., Thin Solid Films 72, 399 (1980).

Mechanical Stress, Grain-boundary Relaxation, and Oxidation of Sputtered CuNi(Mn) Films

  • W. Brückner (a1), W. Pitschke (a1), S. Baunack (a1) and J. Thomas (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed