Skip to main content Accessibility help

Mechanical property development in reactively sputtered tantalum carbide/amorphous hydrocarbon thin films

  • Ryan D. Evans (a1), Gary L. Doll (a2) and Jeffrey T. Glass (a3)


Hardness, elastic modulus, and stress directly influence the ability of tantalum carbide/amorphous hydrocarbon (TaC/a-C:H) thin films to enhance the wear-resistance of steel tribological component surfaces. Designed factorial experiments enabled an evaluation of the effects of acetylene flow rate (QC2H2), direct current bias voltage level (Vb), and substrate rotation rate (ωRot) during deposition on the mechanical properties of reactively sputtered TaC/a-C:H films. Significant relationships were found between compressive stress level and Vb, whereas hardness and elastic modulus were dependent primarily on Vb and secondarily on QC2H2 within the studied parameter space. It is proposed that effects of ion bombardment on the a-C:H phase during growth are responsible for property dependencies on Vb. Decreases in hardness and elastic modulus with increasing QC2H2 are attributed to increased hydrogen concentration and a concomitant decreased volume fraction of TaC crystallites in the films.


Corresponding author

a) Address correspondence to this author. e-mail:


Hide All
1.Doll, G.L. and Osborn, B.K.: Engineering surfaces of precision steel components, in 44th Annual Technical Conference Proceedings (Society of Vacuum Coaters, Philadelphia, PA, April 21–26, 2001).
2.Doll, G.L., Evans, R.D., and Johnson, S.P.: Providing oil-out protection to rolling element bearings with coatings, in 48th Annual Technical Conference Proceedings (Society of Vacuum Coaters, Denver, CO, April 23–28, 2005).
3.Rabinowicz, E.: Friction and Wear of Materials (John Wiley & Sons, New York, 1965).
4.Grischke, M., Bewilogua, K., Dimigen, H.: Preparation, properties and structure of metal containing amorphous hydrogenated carbon films. Mater. Manuf. Processes 8, 407 (1993).
5.Strondl, C., Carvalho, N.M., De Hosson, J.Th.M., Krug, T.G.: Influence of energetic ion bombardment on W-C:H coatings deposited with W and WC targets. Surf. Coat. Technol. 200, 1142 (2005).
6.Shi, B., Meng, W.J.: Intrinsic stresses and mechanical properties of Ti-containing hydrocarbon coatings. J. Appl. Phys. 94, 186 (2003).
7.Park, S.J., Lee, K.R., Ko, D.H., Eun, K.Y.: Microstructure and mechanical properties of WC-C nanocomposite films. Diamond Relat. Mater. 11, 1747 (2002).
8.Shi, B., Meng, W.J., Rehn, L.E., Baldo, P.M.: Intrinsic stress development in Ti-C:H ceramic nanocomposite coatings. Appl. Phys. Lett. 81, 352 (2002).
9.Strondl, C., Carvalho, N.M., De Hosson, J.Th.M., van der Kolk, G.J.: Investigation on the formation of tungsten carbide in tungsten-containing diamond like carbon coatings. Surf. Coat. Technol. 162, 288 (2003).
10.Klages, C.P. and Memming, R.: Microstructure and physical properties of metal-containing hydrogenated carbon films. Mater. Sci. Forum 52/53, 609 (1989).
11.van Duyn, W., van Lochem, B.: Chemical and mechanical characterization of WC:H amorphous layers. Thin Solid Films 181, 497 (1989).
12.Bewilogua, K., Dimigen, H.: Preparation of W-C:H coatings by reactive magnetron sputtering. Surf. Coat. Technol. 61, 144 (1993).
13.Meng, W.J., Gillispie, B.A.: Mechanical properties of Ti-containing and W-containing diamond-like carbon coatings. J. Appl. Phys. 84, 4314 (1998).
14.Precht, W., Czyzniewski, A.: Deposition and some properties of carbide/amorphous carbon nanocomposites for tribological application. Surf. Coat. Technol. 174/175, 979 (2003).
15.Czyzniewski, A.: Deposition and some properties of nanocrystalline WC and nanocomposite WC/a-C:H coatings. Thin Solid Films 433, 180 (2003).
16.Meng, W.J., Tittsworth, R.C., Rehn, L.E.: Mechanical properties and microstructure of TiC/amorphous hydrocarbon nanocomposite coatings. Thin Solid Films 377/378, 222 (2000).
17.Feng, B., Cao, D.M., Meng, W.J., Rehn, L.E., Baldo, P.M., Doll, G.L.: Probing for mechanical and tribological anomalies in the TiC/amorphous hydrocarbon nanocomposite coating system. Thin Solid Films 398/399, 210 (2001).
18.Dimigen, H., Klages, C.P.: Microstructure and wear behavior of metal-containing diamond-like coatings. Surf. Coat. Technol. 49, 543 (1991).
19.Meng, W.J., Curtis, T.J., Rehn, L.E., Baldo, P.M.: Plasma-assisted deposition and characterization of Ti-containing diamond-like carbon coatings. J. Appl. Phys. 83, 6076 (1998).
20.Kulikovsky, V., Tarasenko, A., Fendrych, F., Jastrabik, L., Chvostova, D., Franc, F., Soukup, L.: The mechanical, tribological and optical properties of Ti-C:H coatings, prepared by dc magnetron sputtering. Diamond Relat. Mater. 7, 774 (1998).
21.Zehnder, T., Schwaller, P., Munnik, F., Mikhailov, S., Patscheider, J.: Nanostructural and mechanical properties of nanocomposite nc-TiC/a-C:H films deposited by reactive unbalanced magnetron sputtering. J. Appl. Phys. 95, 4327 (2004).
22.Monaghan, D.P., Teer, D.G., Logan, P.A., Efeoglu, I., Arnell, R.D.: Deposition of wear-resistant coatings based on diamond-like carbon by unbalanced magnetron sputtering. Surf. Coat. Technol. 60, 525 (1993).
23.Strondl, C., van der Kolk, G.J., Hurkmans, T., Fleischer, W., Trinh, T., Carvalho, N.M., de Hosson, J.Th.M.: Properties and characterization of multilayers of carbides and diamond-like carbon. Surf. Coat. Technol. 142, 707 (2001).
24.Evans, R.D., Howe, J.Y., Bentley, J., Doll, G.L., Glass, J.T.: Influence of deposition parameters on the composition and structure of reactively sputtered nanocomposite TaC/a-C:H thin films. J. Mater. Res. 20, 2583 (2005).
25.Montgomery, D.G.: Design and Analysis of Experiments, 5th ed. (John Wiley & Sons, New York, 2001).
26.Ohring, M.: The Materials Science of Thin Films (Academic Press, Boston, 1992).
27.Brantley, W.A.: Calculated elastic constants for stress problems associated with semiconductor devices. J. Appl. Phys. 44, 534 (1973).
28.Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
29.Ferrari, A.C., Kleinsorge, B., Morrison, N.A., Hart, A., Stolojan, V., Robertson, J.: Stress reduction and bond stability during thermal annealing of tetrahedral amorphous carbon. J. Appl. Phys. 85, 7191 (1999).
30.Shi, B., Meng, W.J., Daulton, T.L.: Thermal expansion of Ti-containing hydrogenated amorphous carbon nanocomposite thin films. Appl. Phys. Lett. 85, 4352 (2004).
31.Pierson, H.O.: Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications (Noyes Publications, Westwood, NJ, 1996).
32.Tsui, T.Y., Oliver, W.C., Pharr, G.M.: Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy. J. Mater. Res. 11, 752 (1996).
33.Cheng, Y.T., Cheng, C.M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. R 44, 91 (2004).
34.Windischmann, H.: An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering. J. Appl. Phys. 62, 1800 (1987).
35.d’Heurle, F.M., Harper, J.M.E.: Note on the origin of intrinsic stresses in films deposited via evaporation and sputtering. Thin Solid Films 171, 81 (1989).
36.Knotek, O., Elsing, R., Kramer, G., Jungblut, F.: On the origin of compressive stress in PVD coatings: An explicative model. Surf. Coat. Technol. 46, 265 (1991).
37.Nir, D.: Summary abstract: Energy dependence of the stress in diamond-like carbon films. J. Vac. Sci. Technol. A 4, 2954 (1986).
38.Davis, C.A.: A simple model for the formation of compressive stress in thin films by ion bombardment. Thin Solid Films 226, 30 (1993).
39.Anthony, T.R.: Stresses generated by impurities in diamond. Diamond Relat. Mater. 4, 1346 (1995).
40.Smith, D.L.: Thin-Film Deposition: Principles and Practice (McGraw Hill, Boston, 1995).
41.Zhang, S., Johnson, H.T., Wagner, G.J., Liu, W.K., Hsia, K.J.: Stress generation mechanisms in carbon thin films grown by ion-beam deposition. Acta Mater. 51, 5211 (2003).
42.Jacob, W.: Surface reactions during growth and erosion of hydrocarbon films. Thin Solid Films 326, 1 (1998).
43.Ziegler, J.F.: The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).
44.Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng. R 37, 129 (2002).
45.Veprek, S.: Electronic and mechanical properties of nanocrystalline composites when approaching molecular size. Thin Solid Films 297, 145 (1997).
46.Yin, Y., McKenzine, D., Bilek, M.: Intrinsic stress induced by substrate bias in amorphous hydrogenated silicon thin films. Surf. Coat. Technol. 198, 156 (2005).
47.Paul, B.: Prediction of elastic constants of multiphase materials. Trans. AIME 218, 36 (1960).
48.Dodd, S.P., Cankurtaran, M., James, B.: Ultrasonic determination of the elastic and nonlinear acoustic properties of transition-metal carbide ceramics: TiC and TaC J. Mater. Sci. 38, 1107 (2003).
49.Angus, J.C., Jansen, F.: Dense “diamond-like” hydrocarbons as random covalent networks. J. Vac. Sci. Technol. A 6, 1778 (1988).
50.Phillips, J.C.: Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys. J. Non-Cryst. Solids 34, 153 (1979).
51.Thorpe, M.F.: Continuous deformations in random networks. J. Non-Cryst. Solids 57, 355 (1983).
52.Robertson, J.: Mechanical properties and coordinations of amorphous carbons. Phys. Rev. Lett. 68, 220 (1992).
53.He, H., Thorpe, M.F.: Elastic properties of glasses. Phys. Rev. Lett. 54, 2107 (1985).
54.von Keudell, A., Meier, M., Hopf, C.: Growth mechanism of amorphous hydrogenated carbon. Diamond Relat. Mater. 11, 969 (2002).
55.Thornton, J.A.: The microstructure of sputter-deposited coatings. J. Vac. Sci. Technol. A 4, 3059 (1986).
56.Lynch, J.F., Ruderer, C.G., Duckworth, W.H. eds: Engineering Properties of Selected Ceramic Materials (American Ceramic Society, Columbus, OH, 1966).
57.Shi, B., Meng, W.J., Evans, R.D.: Characterization of high temperature deposited Ti-containing hydrogenated carbon thin films. J. Appl. Phys. 96, 7705 (2004).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed