Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-24T06:45:54.793Z Has data issue: false hasContentIssue false

Ion irradiation induced phase formation in Al–Ni

Published online by Cambridge University Press:  31 January 2011

K. Kyllesbech Larsen
Affiliation:
Institute of Physics, University of Aarhus, DK-8000 Aarhus C, Denmark
N. Karpe
Affiliation:
Institute of Physics, University of Aarhus, DK-8000 Aarhus C, Denmark
J. B⊘ttiger
Affiliation:
Institute of Physics, University of Aarhus, DK-8000 Aarhus C, Denmark
R. Bormann
Affiliation:
Institute of Materials Research, GKSS-Research Center, P.O. Box 1160, D-2054 Geesthacht, Germany
Get access

Abstract

The phase formation of elemental multilayered thin Al100−xNix films during 500 keV Xe+ irradiation has been investigated using transmission electron microscopy. The whole composition range has been covered for various substrate temperatures during the irradiation. At low temperatures, only structurally simple crystalline and amorphous phases are observed. Thermodynamic data for these simple phases were calculated using the CALPHAD method, and nonequilibrium phase diagrams were derived and discussed in the context of the experimental findings.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cheng, Y-T., Mater. Sci. Rep. 5, 45 (1990).CrossRefGoogle Scholar
2.Nastasi, M. and Mayer, J. W., Mater. Sci. Rep. 6, 1 (1991).CrossRefGoogle Scholar
3.Brimhall, J. L., Kissinger, H. E., and Chariot, L. A., Radiat. Eff. 77, 237 (1983).CrossRefGoogle Scholar
4.Hung, L. S., Nastasi, M., Gyulai, J., and Mayer, J. W., Appl. Phys. Lett. 42, 672 (1983).CrossRefGoogle Scholar
5.Nastasi, M., Lillienfeld, D., Johnson, H. H., and Mayer, J. W., J. Appl. Phys. 59, 4011 (1986).CrossRefGoogle Scholar
6.Jaouen, C., Rivière, J. P., Bellarra, A., and Delafond, J., Nucl. Instrum. Methods B7/8, 591 (1985).CrossRefGoogle Scholar
7.Jaouen, C., Rivière, J. P., and Delafond, J., ibid. B19/20, 549 (1987).CrossRefGoogle Scholar
8.Jaouen, C., Ruault, M-O., Bernas, H., Rivière, J. P., and Delafond, J., Europhys. Lett. 4, 1031 (1987).CrossRefGoogle Scholar
9.Bøttiger, J., Dyrbye, K., Pampus, K., and Poulsen, R., Philos. Mag. A59, 569 (1989).CrossRefGoogle Scholar
10.Andersen, L. U. Aaen, Bøttiger, J., and Dyrbye, K., Nucl. Instrum. Methods B51, 125 (1990).CrossRefGoogle Scholar
11.Pampus, K., Dyrbye, K., Torp, B., and Bormann, R., J. Mater. Res. 4, 1385 (1989).CrossRefGoogle Scholar
12.Liu, B-X., Johnson, W. L., and Nicolet, M-A., Appl. Phys. Lett. 42, 45 (1983).CrossRefGoogle Scholar
13.Alonso, J. A. and Simozar, S., Solid State Commun. 48, 765 (1983).CrossRefGoogle Scholar
14.Guinan, M. W. and Kinney, J. H., J. Nucl. Mater. 103/104, 1319 (1981).CrossRefGoogle Scholar
15.King, W. E. and Benedek, R., J. Nucl. Mater. 117, 26 (1983).CrossRefGoogle Scholar
16.Kaufman, L. and Bernstein, H., Computer Calculations of Phase Diagrams (Academic Press, New York, 1970).Google Scholar
17.Lukas, H. L., Weiss, J., and Henig, E. T., CALPHAD 6, 229 (1982).CrossRefGoogle Scholar
18.Bormann, R., Gärtner, F., and Zöltzer, K., J. Less-Common Metals 145, 19 (1988).CrossRefGoogle Scholar
19.Massalski, T. B., Binary Alloy Phase Diagrams (American Societ for Metals, Metals Park, OH, 1986).Google Scholar
20.Bormann, R. (to be published).Google Scholar
21.Eridon, J., Rehn, L., and Was, G., Nucl. Instrum. Methods B19/20, 626 (1987).CrossRefGoogle Scholar
22.Thomé, L., Jaouen, C., Rivière, J. P. and Delafond, J., Nucl. Instrum.Methods B19/20, 554 (1987).CrossRefGoogle Scholar
23.Jaouen, J., Riviere, J. P., Delafond, J., Thomé, L., Pons, F., Danielou, R., Foutenille, J., and Ligeon, E., J. Appl. Phys. 65, 1499 (1989).CrossRefGoogle Scholar
24.Johnson, W. L., Prog. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar