Skip to main content Accessibility help

Hydrothermal synthesis and properties of BiVO4 photocatalysts

  • Wei Wei (a1), Xuejie Yue (a1), Henglv Cui (a1), Xiaomeng Lü (a1) and Jimin Xie (a1)...


Bismuth vanadate (BiVO4) hierarchical spheres were synthesized successfully by a facile hydrothermal approach without any additive by using novel vanadium-based nanosheets as precursors. The results indicated that as-prepared BiVO4 samples have monoclinic structure with high crystallinity. Scanning electron microscopy images show that the spheres were self-assembled by dozens of nanosheets with good dispersibility and uniform particle size. Meanwhile, the photocatalytic activities of the resulting BiVO4 were evaluated by photodegradation of methylene blue (MB) under visible light irradiation and exhibited enhanced catalytic efficiency. The excellent performance can be attributed to the high purity, the huge specific surface area, and the novel hierarchical structure. It was also found that the photodegradation of dye pollution is attributed to the oxidation process of the generated hydroxyl radicals and the action of ${\rm{h}}_{{\rm{vb}}}^{\rm{ + }}$ via direct hole oxidation.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Zhao, Z., Li, Z., and Zou, Z.: Electronic structure and optical properties of monoclinic clinobisvanite BiVO4. Phys. Chem. Chem. Phys. 13, 4746 (2011).
2.Kudo, A., Omori, K., and Kato, H.: A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 121, 11459 (1999).
3.Zhou, L., Wang, W., Liu, S., Zhang, L., Xu, H., and Zhu, W.: A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst. J. Mol. Catal. A: Chem. 252, 120 (2006).
4.Sun, J.X., Chen, G., Wu, J.Z., Dong, H.J., and Xiong, G.H.: Bismuth vanadate hollow spheres: Bubble template synthesis and enhanced photocatalytic properties for photodegradation. Appl. Catal., B 132, 304 (2013).
5.Zhu, G.Q. and Que, W.X.: Hydrothermal synthesis and characterization of visible-light-driven dumbbell-like BiVO4 and Ag/BiVO4 photocatalysts. J. Clust. Sci. 24, 531 (2013).
6.Liu, G.C., Jing, Z., Zhang, X.B., Li, X.F., and Liu, H.: Hydrothermal synthesis and photocatalytic properties of Cu-doped BiVO4 microsheets. J. Inorg. Mater. 3, 287 (2013).
7.Ma, L., Li, W.H., and Luo, J.H.: Solvothermal synthesis and characterization of well-dispersed monoclinic olive-like BiVO4 aggregates. Mater. Lett. 102103, 65 (2013).
8.Wang, X.K., Li, G.C., Ding, J., Peng, H.R., and Chen, K.Z.: Facile synthesis and photocatalytic activity of monoclinic BiVO4 micro/nanostructures with controllable morphologies. Mater. Res. Bull. 47, 3814 (2012).
9.Jiang, H., Meng, X., Dai, H., Deng, J., Liu, Y., Zhang, L., Zhao, Z., and Zhang, R.: High-performance porous spherical or octapod-like single-crystalline BiVO4 photocatalysts for the removal of phenol and methylene blue under visible-light illumination. J. Hazard. Mater. 217218, 92 (2012).
10.Ng, C., Iwase, A., Ng, Y.H., and Amal, R.: Transforming anodized WO3 films into visible-light-active Bi2WO6 photoelectrodes by hydrothermal treatment. J. Phys. Chem. Lett. 3, 913 (2012).
11.Shang, M., Wang, W.Z., Ren, J., Sun, S.M., and Zhang, L.: Nanoscale Kirkendall effect for the synthesis of Bi2MoO6 boxes via a facile solution-phase method. Nanoscale 3, 1474 (2011).
12.Wei, W., Xie, J.M., Meng, S.C., , X.M., Yan, Z.X., and Zhu, J.J.: Synthetic bismuth silicate nanostructures: Photocatalysts grown from silica aerogels precursors. J. Mater. Res. 28, 1658 (2013).
13.Pan, A.Q., Wu, H.B., Zhang, L., and Lou, X.W.: Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties. Energy Environ. Sci. 6, 1476 (2013).
14.Ishibashi, K., Fujishima, A., Watanabe, T., and Hashimoto, K.: Quantum yields of active oxidative species formed on TiO2 photocatalyst. J. Photochem. Photobiol., A 134, 139 (2000).
15.Xiao, Q., Si, Z.C., Zhang, J., Xiao, C., and Tan, X.K.: Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline. J. Hazard. Mater. 150, 62 (2008).
16.Jiang, D.L., Chen, L.L., Zhu, J.J., Chen, M., Shi, W.D., and Xie, J.M.: Novel p-n heterojunction photocatalyst constructed by porous graphite-like C3N4 and nanostructured BiOI: Facile synthesis and enhanced photocatalytic activity. Dalton Trans. 42, 15726 (2013).
17.Tan, G.Q., Zhang, L.L., Ren, H.J., Wei, S.S., Huang, J., and Xia, A.: Effects of pH on the hierarchical structures and photocatalytic performance of BiVO4 powders prepared via the microwave hydrothermal method. ACS Appl. Mater. Interfaces 5, 5186 (2013).
18.Jiang, H., Dai, H., Meng, X., Ji, K., Zhang, L., and Deng, J.: Porous olive-like BiVO4: Alcoho-hydrothermal preparation and excellent visible-light-driven photocatalytic performance for the degradation of phenol. Appl. Catal., B 105, 326 (2011).
19.Obregón, S. and Colón, G.: On the different photocatalytic performance of BiVO4 catalysts for methylene blue and rhodamine B degradation. J. Mol. Catal. A: Chem. 376, 40 (2013).
20.Venkatesan, R., Velumani, S., and Kassiba, A.: Mechanochemical synthesis of nanostructured BiVO4 and investigations of related features. Mater. Chem. Phys. 135, 842 (2012).
21.Meng, X., Zhang, L., Dai, H., Zhao, Z., Zhang, R., and Liu, Y.: Surfactant-assisted hydrothermal fabrication and visible-light-driven photocatalytic degradation of methylene blue over multiple morphological BiVO4 single-crystallites. Mater. Chem. Phys. 125, 59 (2011).
22.Tang, P.S., Chen, H.F., and Cao, F.: One-step preparation of bismuth tungstate nanodisks with visible-light photocatalytic activity. Mater. Lett. 68, 171 (2012).
23.Zhang, X.F., Du, L.L., Wang, H., Dong, X.L., Zhang, X.X., Ma, C., and Ma, H.C.: Highly ordered mesoporous BiVO4: Controllable ordering degree and super photocatalytic ability under visible light. Microporous Mesoporous Mater. 173, 175 (2013).
24.Fan, H.M., Jiang, T.F., Wang, L.L., Wang, D.J., Li, H.Y., Wang, P., He, D.Q., and Xie, T.F.: Effect of BiVO4 crystalline phases on the photoinduced carriers behavior and photocatalytic activity. J. Phys. Chem. C 116(3), 2425 (2012).
25.Zhang, X., Ai, Z.H., Jia, F.L., Zhang, L.Z., Fan, X.X., and Zou, Z.G.: Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases. Mater. Chem. Phys. 103, 162 (2007).
26.Cavalcate, L.S., Sczancoski, J.C., Li, M.S., Longo, E., and Varela, J.A.: β-ZnMoO4 microcrystals synthesized by the surfactant-assisted hydrothermal method: Growth process and photoluminescence properties. Colloids Surf., A 396, 346 (2012).
27.Zeng, H.C.: Ostwald ripening: A synthetic approach for hollow nanomaterials. Curr. Nanosci. 3, 177 (2007).


Hydrothermal synthesis and properties of BiVO4 photocatalysts

  • Wei Wei (a1), Xuejie Yue (a1), Henglv Cui (a1), Xiaomeng Lü (a1) and Jimin Xie (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed