Skip to main content Accessibility help
×
Home

High-resolution solid state NMR experiments for the characterization of calcium phosphate biomaterials and biominerals

  • Frédérique Pourpoint (a1), Cristina Coelho Diogo (a1), Christel Gervais (a1), Christian Bonhomme (a1), Franck Fayon (a2), Sara Laurencin Dalicieux (a3), Isabelle Gennero (a3), Jean-Pierre Salles (a3), Andrew P. Howes (a4), Ray Dupree (a4), John V. Hanna (a4), Mark E. Smith (a4), Francesco Mauri (a5), Gilles Guerrero (a6), P. Hubert Mutin (a6) and Danielle Laurencin (a6)...

Abstract

Calcium phosphates form a vast family of biominerals, which have attracted much attention in fields like biology, medicine, and materials science, to name a few. Solid state Nuclear Magnetic Resonance (NMR) is one of the few techniques capable of providing information about their structure at the atomic level. Here, examples of recent advances of solid state NMR techniques are given to demonstrate their suitability to characterize in detail synthetic and biological calcium phosphates. Examples of high-resolution 31P, 1H (and 17O), solid state NMR experiments of a 17O-enriched monocalcium phosphate monohydrate-monetite mixture and of a mouse tooth are presented. In both cases, the advantage of performing fast Magic Angle Spinning NMR experiments at high magnetic fields is emphasized, notably because it allows very small volumes of sample to be analyzed.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: danielle.laurencin@univ-montp2.fr

References

Hide All
1.Elliott, J.C.: Structure and chemistry of the apatites and other calcium orthophosphates, in Studies in Inorganic Chemistry, Vol. 18 (Elsevier, Amsterdam 1994).
2.Dorozhkin, S.V.: Calcium orthophosphates. J. Mater. Sci. 42, 1061 (2007).
3.Dorozhkin, S.V. and Epple, M.: Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed. 41, 3130 (2002).
4.Dorozkhin, S.V.: Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. 6, 715 (2010).
5.Wang, L. and Nancollas, G.H.: Calcium orthophosphates: Crystallization and dissolution. Chem. Rev. 108, 4628 (2008).
6.Bazin, D., Chappard, C., Combes, C., Carpentier, X., Rouzière, S., André, G., Matzen, G., Allix, M., Thiaudière, D., Reguer, S., Jungers, P., and Daudon, M.: Diffraction techniques and vibrational spectroscopy opportunities to characterise bones. Osteoporos. Int. 20, 1065 (2009).
7.Handschin, R.G. and Stern, W.B.: X-ray diffraction studies on the lattice perfection of human bone apatite (Crista iliaca). Bone 16, S355 (1995).
8.Rey, C., Combes, C., Drouet, C., and Glimcher, M.J.: Bone mineral: Update on chemical composition and structure. Osteoporos. Int. 20, 1013 (2009).
9.Rubin, M.A., Jasiuk, I., Taylor, J., Rubin, J., Ganey, T., and Apkarian, R.P.: TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33, 270 (2003).
10.Rubin, M.A. and Jasiuk, I.: The TEM characterization of the lamellar structure of osteoporotic human trabecular bone. Micron 36, 653 (2005).
11.Miller, L.M., Vairavamurthy, V., Chance, M.R., Mendelsohn, R., Paschalis, E.P., Betts, F., and Boskey, A.L.: In situ analysis of mineral content and crystallinity in bone using infrared microspectroscopy, of the ν4 (PO4)3−vibration. Biochim. Biophys. Acta 1527, 11 (2001).
12.Rey, C., Collins, B., Shimizu, M., and Glimcher, M.J.: Resolution enhanced Fourier transform infrared spectroscopic study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: I. Investigation in the ν4 PO4 domain. Calcif. Tissue Int. 46, 384 (1990).
13.Paschalis, E.P., Betts, F., Di Carlo, E., Mendelsohn, R., and Boskey, A.L.: FTIR microspectroscopic analysis of normal human cortical and trabecular bone. Calcif. Tissue Int. 61, 480 (1997).
14.Takata, S., Shibata, A., Yonezu, H., Yamada, T., Takahashi, M., Abbaspour, A., and Yasui, N.: Biophysic evaluation of bone quality-application of Fourier transform infrared spectroscopy and phosphorus-31 solid-state nuclear-magnetic-resonance spectroscopy. J. Med. Invest. 51, 133 (2004).
15.Sauer, G., Zunic, W.B., Durig, J.R., and Wuthier, R.E.: Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates. Calcif. Tissue Int. 54, 414 (1994).
16.Rey, C., Combes, C., Drouet, C., Sfihi, H., and Barroug, A.: Physico-chemical properties of nanocrystalline apatites: Implications for biominerals and biomaterials. Mater. Sci. Eng. C27, 198 (2007).
17.Laurencin, D., Wong, A., Chrzanowski, W., Knowles, J.C., Qiu, D., Pickup, D.M., Newport, R.J., Gan, Z., Duer, M.J., and Smith, M.E.: Probing the calcium and sodium local environment in bones and teeth using multinuclear solid state NMR and X-ray absorption spectroscopy. Phys. Chem. Chem. Phys. 12, 1081 (2010).
18.Binsted, N., Hasnain, S.S., and Hukins, D.W.L.: Developmental changes in bone mineral structure demonstrated by extended X-ray absorption fine structure (EXAFS) spectroscopy. Biochem. Biophys. Res. Commun. 107, 89 (1982).
19.Harries, J.E., Hukins, D.W.L., and Hasnain, S.S.: Calcium environment in bone mineral determined by EXAFS spectroscopy. Calcif. Tissue Int. 43, 250 (1988).
20.Kolodziejski, W.: Solid-state NMR studies of bone. Top. Curr. Chem. 246, 235 (2005).
21.Pourpoint, F., Gervais, C., Bonhomme-Coury, L., Azaïs, T., Coelho, C., Mauri, F., Alonso, B., Babonneau, F., and Bonhomme, C.: Calcium phosphates and hydroxyapatites: Solid state NMR experiments and first-principles calculations. Appl. Magn. Reson. 32, 435 (2007).
22.Maltsev, S., Duer, M.J., Murray, R.C., and Jaeger, C.: A solid-state NMR comparison of the mineral structure in bone from diseased joints in the horse. J. Mater. Sci. 42, 8804 (2007).
23.Kaflak-Hachulska, A., Samoson, A., and Kolodziejski, W.: 1H MAS and 1H —> 31P CP/MAS NMR Study of Human Bone Mineral. Calcif. Tissue Int. 73, 476 (2003).
24.Kaflak, A. and Kolodziejski, W.: Complementary information on water and hydroxyl groups in nanocrystalline carbonated hydroxyapatites from TGA, NMR and IR measurements. J. Mol. Struct. 990, 263 (2011).
25.Wilson, E.E., Awonusi, A., Morris, M.D., Kohn, D.H., Tecklenburg, M.M.J., and Beck, L.W.: Three structural roles for water in bone observed by solid-state NMR. Biophys. J. 90, 3722 (2006).
26.Reid, D.G., Jackson, G.J., Duer, M.J., and Rodgers, A.L.: Apatite in kidney stones is a molecular composite with glycosaminoglycans and proteins: Evidence from nuclear magnetic resonance spectroscopy, and relevance to Randall’s plaque, pathogenesis and prophylaxis. J. Urol. 185, 725 (2011).
27.Reid, D.G., Duer, M.J., Murray, R.C., and Wise, E.R.: The organic mineral interface in teeth is like that in bone and dominated by polysaccharides: Universal mediators of normal calcium phosphate biomineralization in vertebrates? Chem. Mater. 20, 3549 (2008).
28.Huang, S-J., Tsai, Y-L., Lee, Y-L., Lin, C-P., and Chan, J.C.C.: Structural model of rat dentin revisited. Chem. Mater. 21, 2583 (2009).
29.Kolmas, J. and Kołodziejski, W.: Concentration of hydroxyl groups in dental apatites: A solid-state 1H MAS NMR study using inverse 31P —> 1H cross-polarization. Chem. Commun. 4390 (2007).
30.Yesinowski, J.P. and Eckert, H.: Hydrogen environments in calcium phosphates: 1H MAS NMR at high spinning speeds. J. Am. Chem. Soc. 109, 6274 (1987).
31.Laurencin, D., Wong, A., Dupree, R., and Smith, M.E.: Natural abundance 43Ca solid-state NMR characterization of hydroxyapatite: Identification of the two calcium sites. Magn. Reson. Chem. 46, 347 (2008).
32.Gervais, C., Laurencin, D., Wong, A., Pourpoint, F., Labram, J., Woodward, B., Howes, A.P., Pike, K.J., Dupree, R., Mauri, F., Bonhomme, C., and Smith, M.E.: New perspectives on calcium environments in inorganic materials containing calcium-oxygen bonds: A combined computational-experimental 43Ca NMR approach. Chem. Phys. Lett. 464, 42 (2008).
33.Rothwell, W.P., Waugh, J.S., and Yesinowski, J.P.: High resolution variable-temperature phosphorus-31 NMR of solid calcium phosphates. J. Am. Chem. Soc. 102, 2637 (1980).
34.Kolmas, J., Ślósarczyk, A., Wojtowicz, A., and Kolodziejski, W.: Estimation of the specific surface area of apatites in human mineralized tissues using 31P MAS NMR. Solid State Nucl. Magn. Reson. 32, 53 (2007).
35.Cho, G., Wu, Y., and Ackerman, J.L.: Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. Science 300, 1123 (2003).
36.Pourpoint, F., Kolassiba, A., Gervais, C., Azaïs, T., Bonhomme-Coury, L., Bonhomme, C., and Mauri, F.: First-principles calculations of NMR parameters in biocompatible materials science: The case study of calcium phosphates, β- and γ-Ca(PO3)2. Combination with MAS-J experiments. Chem. Mater. 19, 6367 (2007).
37.Tseng, Y-H., Mou, C-Y., and Chan, J.C.C.: Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: A mechanistic model for central dark line formation. J. Am. Chem. Soc. 128, 6909 (2006).
38.Jäger, C., Welzel, T., Meyer-Zaika, W., and Epple, M.: A solid-sate NMR investigation of the structure of nanocrystalline hydroxyapatite. Magn. Reson. Chem. 44, 573 (2006).
39.Isobe, T., Nakamura, S., Nemoto, R., Senna, M., and Sfihi, H.: Solid-state nuclear magnetic resonance study of the local structure of calcium phosphate nanoparticles synthesized by a wet-mechanochemical reaction. J. Phys. Chem. B. 106, 5169 (2002).
40.Laurencin, D., Almora-Barrios, N., de Leeuw, N.H., Gervais, C., Bonhomme, C., Mauri, F., Chrzanowski, W., Knowles, J.C., Newport, R.J., Wong, A., Gan, Z., and Smith, M.E.: Magnesium incorporation into hydroxyapatite. Biomaterials 32, 1826 (2011).
41.Ashbrook, S.E. and Smith, M.E.: Solid state 17O NMR—an introduction to the background principles and applications to inorganic materials. Chem. Soc. Rev. 35, 718 (2006).
42.MacKenzie, K.J.D. and Smith, M.E.: Multinuclear Solid State NMR of Inorganic Materials (Pergamon Materials Series, Pergamon Press, Oxford, UK, 2002).
43.Wu, G., Rovnyank, D., Sun, B., and Griffin, R.G.: High-resolution multiple quantum MAS NMR spectroscopy of half-integer quadrupolar nuclei. Chem. Phys. Lett. 249, 210 (1995).
44.Pickard, C.J. and Mauri, F.: All-electron magnetic response pseudopotentials NMR chemical shifts. Phys. Rev. B: Condens.Mater 63, 245101 (2001).
45.Chappell, H., Duer, M., Groom, N., Pickard, C., and Bristowe, P.: Probing the surface structure of hydroxyapatite using NMR spectroscopy and first-principles calculations. Phys. Chem. Chem. Phys. 10, 600 (2008).
46.Amoureux, J.P., Fernandez, C., and Steuernagel, S.: Z filtering in. MQMAS NMR. J. Magn. Reson. A 123, 116 (1996).
47.Fung, B.M., Khitrin, A.K., and Ermolaev, K.: An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 142, 97 (2000).
48.Coelho, C., Rocha, J., Madhu, P.K., and Mafra, L.: Practical aspects of Lee-Goldburg based CRAMPS techniques for high resolution 1H NMR spectroscopy in solids: Implementation and applications. J. Magn. Reson. 194, 264 (2008).
49.Van Rossum, B.J., Förster, H., and de Groot, H.J.M.: High field and high-speed CP MAS 13C NMR heteronuclear dipolar correlation spectroscopy of solids with frequency-switched Lee-Goldburg homonuclear decoupling. J. Magn. Reson. 124, 516 (1997).
50.PARATEC (PARAllel Total Energy Code) by Pfrommer, B., Raczkowski, D., Canning, A., Louie, S.G.; Lawrence Berkeley National Laboratory (with contributions from F. Mauri, M. Cote, Y. Yoon, C. Pickard and P. Heynes) based on the GIPAW approach (see Ref. 44); for more information see www.nersc.gov/projects/paratec.
51.Perdew, J.P., Burke, K. and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865e8 (1996).
52.Troulier, N. and Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. 2. Operators for fast iterative diagonalization. Phys. Rev. B 43, 1993 (1991).
53.Kleinman, L. and Bylander, D.: Efficacious form for model pseudopotentials. Phys. Rev. Lett. 48, 1425 (1982).
54.Schroeder, L.W., Prince, E., and Dickens, B.: Hydrogen bonding in Ca(H2PO4)2·H2O as determined by neutron diffraction. Acta Crystallogr. B B31, 9 (1975).
55.Catti, M., Ferraris, G., and Filhol, A.: A hydrogen-bonding in crystalline state: CaHPO4 (Monetite), P-1 or P1–Novel neutron-diffraction study. Acta Crystallogr. B 33, 1223 (1977).
56.Profeta, M., Mauri, F., and Pickard, C.J.: Accurate first principles prediction of 17O NMR parameters in SiO2: Assignment of the zeolite ferrierite spectrum. J. Am. Chem. Soc. 125, 541 (2003).
57.Cherry, B.R., Alam, T.M., Click, C., Brow, R.K., and Gan, Z.H.: Combined ab initio computational and solid-state 17O MAS NMR studies of crystalline P2O5. J. Phys. Chem. B. 107, 4894 (2003).
58.Flambard, A., Montagne, L., and Delevoye, L.: A new 17O-isotopic enrichment method for the NMR characterisation of phosphate compounds. Chem. Commun. 32, 3426 (2006).
59.Gervais, C., Babonneau, F., and Smith, M.E.: Detection, quantification, and magnetic field dependence of solid-state 17O NMR of X-O-Y (X, Y = Si, Ti) linkages: Implications for characterizing amorphous titania-silica-based materials. J. Phys. Chem. B 105, 1971 (2001).
60.Gervais, C., Profeta, M., Lafond, V., Bonhomme, C., Azaïs, T., Mutin, H., Pickard, C.J., Mauri, F., and Babonneau, F.: Combined ab initio computational and experimental multinuclear solid-state magnetic resonance study of phenylphosphonic acid. Magn. Reson. Chem. 42, 445 (2004).
61.Massiot, D., Fayon, F., Capron, M., King, I., Le Calvé, S., Alonso, B., Durand, J.O., Bujoli, B., Gan, Z., and Hoatson, G.: Modelling one and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 40, 70 (2002).
62.Gervais, C., Dupree, R., Pike, K.J., Bonhomme, C., Profetta, M., Pickard, C.J., and Mauri, F.: Combined first-principles computational and experimental multinuclear solid-state NMR investigation of amino acids. J. Phys. Chem. A 109, 6960 (2005).
63.Gervais, C., Profeta, M., Babonneau, F., Pickard, C.J., and Mauri, F.: Ab-initio calculations of NMR parameters of highly coordinated oxygen sites in aluminosilicates. J. Phys. Chem. B 108, 13249 (2004).
64.Gervais, C., Coelho, C., Azaïs, T., Maquet, J., Laurent, G., Pourpoint, F., Bonhomme, C., Florian, P., Alonso, B., Guerrero, G., Mutin, P.H., and Mauri, F.: First principles NMR calculations of phenylphosphinic acid C6H5HPO(OH): Assignments, orientation of tensors by local field experiments and effect of molecular motion. J. Magn. Reson. 187, 131 (2007).
65.Frydman, L. and Harwood, J.S.: Isotropic spectra of half–integer quadrupolar spins from bidimensional MAS NMR. J. Am. Chem. Soc. 117, 5367 (1995).
66.Samoson, A., Lippmaa, E., and Pines, A.: High resolution solid state NMR averaging of second-order effects by means of a double-rotor. Mol. Phys. 65, 1013 (1988).
67.Hung, I., Howes, A.P., Parkinson, B.G., Anupold, T., Samoson, A., Brown, S.P., Harrison, P.F., Holland, D., and Dupree, R.: Determination of the bond-angle distribution in vitreous B2O3 by 11B double rotation (DOR) NMR spectroscopy. J. Solid State Chem. 182, 2402 (2009).
68.Roiland, C.: Etude de l’ordre local dans des phosphates désordonnés modèles par spectroscopies RMN et RAMAN. PhD Thesis (Orléans University, France, 2007).
69.Bryce, D.L., Eichele, K., and Wasylishen, R.E.: An 17O NMR and quantum chemical study of monoclinic and orthorhombic polymorphs of triphenylphosphine oxide. Inorg. Chem. 42, 5085 (2003).
70.Hung, I., Wong, A., Howes, A.P., Anupõld, T., Past, J., Samoson, A., Mo, X., Wu, G., Smith, M.E., Brown, S.P., and Dupree, R.: Determination of NMR interaction parameters from double rotation NMR. J. Magn. Reson. 188, 246 (2007).
71.Bonhomme, C., Gervais, C., Coelho, C., Pourpoint, F., Azaïs, T., Bonhomme-Coury, L., Babonneau, F., Jacob, G., Ferrari, M., Canet, D., Yates, J.R., Pickard, C.J., Joyce, S.A., and Mauri, F.: New perspectives in the PAW/GIPAW approach: JP-O-Si coupling constants, antisymmetric parts of shift tensors and NQR predictions. Magn. Reson. Chem. 48, S86 (2010).
72.Menger, E.M. and Veeman, W.S.: Quadrupole effects in high-resolution phosphorus-31 solid state NMR spectra of triphenylphosphine copper (I) complexes. J. Magn. Reson. 46, 257 (1982).
73.Massiot, D., Fayon, F., Alonso, B., Trebosc, J., and Amoureux, J.P.: Chemical bonding differences evidenced from J-coupling in solid state NMR experiments involving quadrupolar nuclei. J. Magn. Reson. 164, 160 (2003).
74.Montouillout, V., Morais, C.M., Douy, A., Fayon, F., and Massiot, D.: Toward a better description of gallo-phosphate materials in solid-state NMR: 1D and 2D correlation studies. Magn. Reson. Chem. 44, 770 (2006).
75.Martineau, C., Fayon, F., Legein, C., Buzare, J.Y., Silly, G., and Massiot, D.: Accurate heteronuclear J-coupling measurements in dilute spin systems using the multiple-quantum filtered J-resolved experiment. Chem. Commun. 26, 2720 (2007).
76.Lesage, A.: Recent advances in solid-state NMR spectroscopy of spin I = 1/2 nuclei. Phys. Chem. Chem. Phys. 11, 6876 (2009) (and references therein).
77.Bowes, J.H. and Murray, M.M.: The composition of human enamel and dentine. Biochem. J. 30, 977 (1936).
78.Melacini, G., Feng, Y., and Goodman, M.: Acetyl-terminated and template-assembled collagen-based polypeptides composed of Gly-Pro-Hyp sequences. 3. Conformational analysis by 1H-NMR and molecular modeling studies. J. Am. Chem. Soc. 118, 10359 (1996).
79.Sakellariou, D., Le Goff, G., and Jacquinot, J-F.: High-resolution, high-sensitivity NMR of nanolitre anisotropic samples by coil spinning. Nature 447, 694 (2007).
80.Wong, A., Aguiar, P.M., and Sakellariou, D.: Slow magic-angle coil spinning: A high-sensitivity and high-resolution NMR strategy for microscopic biological specimens. Magn. Reson. Med. 63, 269 (2010).

Keywords

Type Description Title
PDF
Supplementary materials

Pourpoint Supplementary Materials
Pourpoint Supplementary Materials

 PDF (99 KB)
99 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed