Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T07:40:09.504Z Has data issue: false hasContentIssue false

Growth and Characterization of Epitaxial NiMnSb/PtMnSb C1b Heusler alloy superlattices

Published online by Cambridge University Press:  31 January 2011

F. B. Mancoff
Affiliation:
Materials Science and Engineering, Stanford University, Stanford, California 94305–2205
J. F. Bobo
Affiliation:
Materials Science and Engineering, Stanford University, Stanford, California 94305–2205
O. E. Richter
Affiliation:
Materials Science and Engineering, Stanford University, Stanford, California 94305–2205
K. Bessho
Affiliation:
Materials Science and Engineering, Stanford University, Stanford, California 94305–2205
P. R. Johnson
Affiliation:
Materials Science and Engineering, Stanford University, Stanford, California 94305–2205
R. Sinclair
Affiliation:
Materials Science and Engineering, Stanford University, Stanford, California 94305–2205
W. D. Nix
Affiliation:
Materials Science and Engineering, Stanford University, Stanford, California 94305–2205
R. L. White
Affiliation:
Materials Science and Engineering, Stanford University, Stanford, California 94305–2205
B. M. Clemens
Affiliation:
Materials Science and Engineering, Stanford University, Stanford, California 94305–2205
Get access

Abstract

We have sputter deposited NiMnSb/PtMnSb Heusler alloy superlattices with bilayer periods from 9–160 Å. X-ray diffraction and cross-sectional transmission electron microscopy (TEM) measurements indicate that even for short bilayer periods, the superlattices are compositionally modulated, epitaxial, and maintain the Heusler alloy C1b structure. Low- and high-angle diffraction profiles are in agreement with simulations of the superlattice peaks. TEM images reveal defects, including stacking faults, which help relieve lattice mismatch strain. Energy minimization calculations of the stacking fault density are within a factor of 3 of the density observed by TEM. The saturation magnetization of the superlattices is close to bulk PtMnSb and NiMnSb, with a tendency for perpendicular magnetization at short bilayer periods.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.de Groot, R.A., Mueller, F. M., van Engen, P. G., and Buschow, K.H. J., Phys. Rev. Lett. 50, 2024 (1983).CrossRefGoogle Scholar
2.Ebert, H. and Schütz, G., J. Appl. Phys. 69, 4627 (1991).CrossRefGoogle Scholar
3.Youn, S.J. and Min, B. I., Phys. Rev. B 51, 10436 (1995).Google Scholar
4.Moodera, J. S., Kinder, L.R., Wong, T.M., and Meservey, R., Phys. Rev. Lett. 74, 3273 (1995).CrossRefGoogle Scholar
5.Hordequin, C., Nozieres, J. P., and Pierre, J., J. Magn. Magn. Mater. 183, 225 (1998).CrossRefGoogle Scholar
6.Johnson, P.R., Kautzky, M. C., Mancoff, F.B., Clemens, B. M., and White, R.L., IEEE Trans. Magn. 32, 4615 (1996).CrossRefGoogle Scholar
7.Kautzky, M.C., Mancoff, F.B., Bobo, J. F., Johnson, P.R., White, R. L., and Clemens, B. M., J. Appl. Phys. 81, 4026 (1997).Google Scholar
8.Tanaka, C.T., Nowak, J., and Moodera, J.S., J. Appl. Phys. 81, 5515 (1997).CrossRefGoogle Scholar
9.Caballero, J. A., Park, Y. D., Cabbibo, A., Childress, J. R., Petroff, F., and Morel, R., J. Appl. Phys. 81, 2740 (1997).Google Scholar
10.Caballero, J. A., Geerts, W. J., Childress, J. R., Petroff, F., Galtier, P., Thiele, J-U., and Weller, D., Appl. Phys. Lett. 71, 2382 (1997).CrossRefGoogle Scholar
11.Kabani, R., Terada, M., Roshko, A., and Moodera, J.S., J. Appl. Phys. 67, 4898 (1990).Google Scholar
12.van Engen, P.G., Buschow, K.H. J., Jongebreur, R., and Erman, M., Appl. Phys. Lett. 42, 202 (1983).CrossRefGoogle Scholar
13.Moodera, J. S. and Mootoo, D. M., J. Appl. Phys. 76, 6101 (1994).Google Scholar
14.Kautzky, M.C. and Clemens, B. M., Appl. Phys. Lett. 66, 1279 (1995).CrossRefGoogle Scholar
15.Kautzky, M.C. and Clemens, B.M., in Magnetic Ultrathin Films, Multilayers and Surfaces, edited by Fert, A., Fujimori, H., Guntherodt, G., Heinrich, B., Egelhoff, W. F. Jr, Marinero, E. E., and White, R.L. (Mater. Res. Soc. Symp. Proc. 384, Pittsburgh, PA, 1995), p. 109.Google Scholar
16.Hordequin, C., Pierre, J., and Currat, R., J. Magn. Magn. Mater. 162, 75 (1996).Google Scholar
17.Takanashi, K., Fujimori, H., Shoji, M., and Nagai, A., Jpn. J. Appl. Phys. 26, L1317 (1987).CrossRefGoogle Scholar
18.Kautzky, M.C., Ph.D. Thesis, Stanford University (1998).Google Scholar
19.Néel, L., J. Phys. 15, 225 (1954).Google Scholar
20.Parrat, L. G., Phys. Rev. 95, 359 (1954).Google Scholar
21.Fullerton, E. E., Schuller, I. K., Vanderstraeten, H., and Bruynseraede, Y., Phys. Rev. B 45, 9292 (1992).CrossRefGoogle Scholar
22.Otto, M.J., vanWoerden, R.A. M., vanderValk, P.J., Wijngaard, J., van Bruggen, C.F., Haas, C., and Buschow, K. H.J, J. Phys.: Condens. Matter 1, 2341 (1989).Google Scholar
23.Weertman, J. and Weertman, J.R., Elementary Dislocation Theory (Macmillan, New York, 1964).Google Scholar
24. Strain relaxation in a NiMnSb layer, resulting from the bottom of the two partial dislocations associated with a stacking fault, is effectively canceled in the subsequent PtMnSb layer by the upper of the two partial dislocations.Google Scholar
25.Smith, D. L., Thin-Film Deposition: Principles and Practices (McGraw-Hill, New York, 1995).Google Scholar
26.Victora, R., private communication.Google Scholar
27.Courtney, T.H., Mechanical Behavior of Materials (McGraw-Hill, New York, 1990).Google Scholar
28.Barrett, C.R., Nix, W.D., and Tetelman, A.S., The Principles of Engineering Materials (Prentice-Hall, Englewood Cliffs, NJ, 1973).Google Scholar