Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T19:40:28.128Z Has data issue: false hasContentIssue false

Growth and characterization of Ba2YCu3O7−δ films in reduced oxygen partial pressures using the BaF2 post-annealing process

Published online by Cambridge University Press:  31 January 2011

M.P. Siegal
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
S.Y. Hou
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
Julia M. Phillips
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
T.H. Tiefel
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
J.H. Marshall
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
Get access

Abstract

Epitaxial films of Ba2YCu3O7−δ (BYCO), as thin as 250 Å and with Jc's approaching those for the best in situ grown films, can be formed by coevaporating BaF2, Y, and Cu followed by a two-stage anneal. These results extend the work of R. Feenstra et al. [J. Appl. Phys. 69, 6569 (1991)] for film thicknesses >2000 Å. This involves using low oxygen partial pressure [p(O2) = 4.3 Torr] during the high temperature portion of the anneal, which we vary from Ta = 600 to 950 °C. The BYCO melt line is seen to be the upper limit for Ta. The use of lower p(O2) shifts the window for stable BYCO film growth to lower temperature. The lower growth temperature required for the low p(O2) process allows the formation of smooth films with greater microstructural disorder than for films grown in p(O2) = 740 Torr at higher Ta, resulting in higher Jc values by a factor of four. The relationship between the Ta required to grow films with the strongest pinning force and p(O2) is log [p(O2)] ∝ Ta−1, independent of growth method (in situ or ex situ) over a range of five orders of magnitude in p(O2).

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Eom, C. B., Sun, J. Z., Lairson, B. M., Streiffer, S. K., Marshall, A. F., Yamamoto, K., Anlage, S. M., Bravman, J. C., and Geballe, T. H., Physica C 171, 354 (1990).CrossRefGoogle Scholar
2Inam, A., Wu, X.D., Nazar, L., Hegde, M.S., Rogers, C.T., Venkatesan, T., Simon, R. W., Daly, K., Padamsee, H., Kirchgessner, J., Moffat, D., Rubin, D., Shu, Q.S., Kalokitis, D., Fathy, A., Pendrick, V., Brown, R., Brycki, B., Belohoubek, E., Drabeck, L., Griiner, G., Hammond, R., Gamble, F., Lairson, B. M., and Bravman, J. C., Appl. Phys. Lett. 56, 1178 (1990).CrossRefGoogle Scholar
3Mankiewich, P.M., Schofleld, J.H., Skocpol, W.J., Howard, R.E., Dayem, A.H., and Good, E., Appl. Phys. Lett. 51, 1753 (1987).CrossRefGoogle Scholar
4Mclntyre, P.C., Cima, M.J., Smith, J.A. Jr., Siegal, M.P., Phillips, J.M., and Hallock, R.B., J. Appl. Phys. 71, 1868 (1992).Google Scholar
5Siegal, M.P., Phillips, J.M., Dover, R.B. van, Tiefel, T.H., and Marshall, J.H., J. Appl. Phys. 68, 6353 (1990).Google Scholar
6Siegal, M.P., Phillips, J.M., Hsieh, Y-F., and Marshall, J.H., Physica C 172, 282 (1990).CrossRefGoogle Scholar
7Mogro-Campero, A. and Turner, L. G., Appl. Phys. Lett. 58, 417 (1991).CrossRefGoogle Scholar
8Hammond, R.H. and Bormann, R., Physica C 162-164, 703 (1989).Google Scholar
9Feenstra, R., Lindemer, T. B., Budai, J. D., and Galloway, M. D., J. Appl. Phys. 69, 6569 (1991).CrossRefGoogle Scholar
10Bean, C.P., Phys. Rev. Lett. 8, 250 (1962).CrossRefGoogle Scholar
11Gyorgy, E. M., Dover, R. B. van, Jackson, K. A., Schneemeyer, L. F., and Waszczak, J.V., Appl. Phys. Lett. 55, 283 (1989).CrossRefGoogle Scholar
12Shinohara, K., Matijasevic, V., Rosenthal, P. A., Marshall, A. F., Hammond, R. H., and Beasley, M. R., Appl. Phys. Lett. 58, 756 (1991).CrossRefGoogle Scholar
13Siegal, M.P., Phillips, J.M., Hebard, A.F., Dover, R.B. van, Farrow, R.C., Tiefel, T. H., and Marshall, J. H., J. Appl. Phys. 70, 4982 (1991).CrossRefGoogle Scholar
14Carlson, D.J., Siegal, M.P., Phillips, J.M., Tiefel, T.H., and Marshall, J.H., J. Mater. Res. 5, 2797 (1990).Google Scholar
15Feenstra, R., Christen, D. K., Budai, J.D., Pennycook, S.J., Norton, D.P., Lowndes, D. H., Klabunde, C. E., and Galloway, M.D., in Proceedings ICAM 91, E-MRS Spring Meeting, Symposium Al: High Temperature Superconductor Thin Films, Strasbourg, France, May 27-31, 1991.Google Scholar
16Eom, C. B., personal communication.Google Scholar
17Laderman, S. S., Taber, R. C., Jacowitz, R. D., Moll, J. L., Eom, C. B., Hylton, T.L., Marshall, A.F., Geballe, T.H., and Beasley, M.R., Phys. Rev. B 43, 2922 (1991).CrossRefGoogle Scholar
18Siegal, M.P., Hou, S.Y., Phillips, J.M., Tiefel, T.H., and Marshall, J.H. (unpublished).Google Scholar