Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-25T04:42:54.971Z Has data issue: false hasContentIssue false

Chemical processing and densification characteristics of lithium aluminosilicate (LAS) gels

Published online by Cambridge University Press:  31 January 2011

Hyun M. Jang*
Affiliation:
Department of Materials Science and Engineering, and Advanced Ceramics Processing Science Laboratory, Pohang Institute of Science and Technology (POSTECH), Pohang 790-784, Korea
Kwang S. Kim
Affiliation:
Department of Inorganic Materials Engineering, College of Engineering, Chonnam National University, Kwang-Joo, Korea
Chang J. Jung
Affiliation:
Department of Inorganic Materials Engineering, College of Engineering, Chonnam National University, Kwang-Joo, Korea
*
a)Address correspondence to this author.
Get access

Abstract

Two different chemical processing routes were successfully used for the fabrication of lithium aluminosilicate (LAS) specimens having dense and homogeneous microstructure with an essentially pore-free state. These are (i) sol-gel route using the hydrolysis-condensation reaction of metal alkoxides and (ii) mixed colloidal processing route. Lowering Li content in the sol-gel-derived LAS significantly enhanced densification and retarded the crystallization. The β-spodumene (∼0.8 μm) seeding in the sol-gel-derived LAS modified the sequence of phase transformations and lowered the crystallization temperature by 120 °C. Therefore, combining the epitaxial seeding with the sol-gel process, one can bring down the crystallization temperature to the sintering temperature range (∼800 °C). Similarly, the LAS gel prepared by the mixed colloidal processing route exhibited a noticeable shrinkage over a broad temperature range (600–950 °C) and produced a dense sintered body with an essentially pore-free microstructure.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Stookey, S. D., U.S. Pat. No. 2 920971, January 12, 1960.Google Scholar
2.Scheidler, H. and Rodek, E., Am. Ceram. Soc. Bull. 68, 19261930 (1989).Google Scholar
3.Phalippou, J., Prassas, M., and Zarzycki, J., J. Non-Cryst. Solids 48, 17 (1982).Google Scholar
4.Orcel, G., Phalippou, J., and Hcnch, L. L., J. Non-Cryst. Solids 82, 301 (1986).Google Scholar
5.de Larabilly, H. and Klein, L. C., J. Non-Cryst. Solids 102, 269 (1988).Google Scholar
6.Lee, G. S., Messing, G. L., and De Laat, F. G. A., J. Non-Cryst. Solids 16, 125 (1990).Google Scholar
7.Covino, J., De Laat, F. G. A., and Welsbie, R. A., J. Non-Cryst. Solids 82, 329 (1986).Google Scholar
8.de Lambilly, H. and Klein, L. C., J. Non-Cryst. Solids 109, 69 (1989).Google Scholar
9.Jang, H. M., Kim, K. S., and Jung, C. J., J. Kor. Ceram. Soc. 28, 365 (1991).Google Scholar
10.Yang, J., Sakka, S., Yoko, T., and Kozuka, H., J. Mater. Sci. 26, 1827 (1991).Google Scholar
11.Streitwieser, A., Jr. and Hcathcock, C. H., Introduction to Organic Chemistry, 2nd ed. (Macmillan Pub. Co., Inc., New York, 1981), p. 369.Google Scholar
12.Hogg, R., Healy, T. W., and Fuerstenau, D. W., Trans. Faraday Soc. 62, 1638 (1966).CrossRefGoogle Scholar
13.Wiersema, P. H., Loeb, A. L., and Overbeek, J. Th. G., J. Colloid Interf. Sci. 22, 78 (1966).Google Scholar
14. JCPDS, Powder Diffraction Files, Set. 31–706 (1981).Google Scholar
15.Knickerbocker, S., Tuzzolo, M. R., and Lawhorne, S., J. Am. Ceram. Soc. 72, 1873 (1989).Google Scholar
16.Roy, B. N., J. Am. Ceram. Soc. 73, 846 (1990).Google Scholar
17.Orcel, G. and Hcnch, L. L., in Science of Ceramic Chemical Processing, edited by Hench, L. L. and Ulrich, D. R. (John Wiley and Sons, New York, 1986), p. 224.Google Scholar
18.Kumagai, M. and Messing, G. L., J. Am. Ceram. Soc. 67, C230 (1984).Google Scholar
19.Matusita, K. and Sakka, S., J. Non-Cryst. Solids 38 & 39, 741 (1980).Google Scholar
20.Matusita, K., Komatsu, T., and Yokota, R., J. Mater. Sci. 19, 291 (1984).Google Scholar