Skip to main content Accessibility help
×
Home

Chemical processing and densification characteristics of lithium aluminosilicate (LAS) gels

  • Hyun M. Jang (a1), Kwang S. Kim (a2) and Chang J. Jung (a2)

Abstract

Two different chemical processing routes were successfully used for the fabrication of lithium aluminosilicate (LAS) specimens having dense and homogeneous microstructure with an essentially pore-free state. These are (i) sol-gel route using the hydrolysis-condensation reaction of metal alkoxides and (ii) mixed colloidal processing route. Lowering Li content in the sol-gel-derived LAS significantly enhanced densification and retarded the crystallization. The β-spodumene (∼0.8 μm) seeding in the sol-gel-derived LAS modified the sequence of phase transformations and lowered the crystallization temperature by 120 °C. Therefore, combining the epitaxial seeding with the sol-gel process, one can bring down the crystallization temperature to the sintering temperature range (∼800 °C). Similarly, the LAS gel prepared by the mixed colloidal processing route exhibited a noticeable shrinkage over a broad temperature range (600–950 °C) and produced a dense sintered body with an essentially pore-free microstructure.

Copyright

Corresponding author

a)Address correspondence to this author.

References

Hide All
1.Stookey, S. D., U.S. Pat. No. 2 920971, January 12, 1960.
2.Scheidler, H. and Rodek, E., Am. Ceram. Soc. Bull. 68, 19261930 (1989).
3.Phalippou, J., Prassas, M., and Zarzycki, J., J. Non-Cryst. Solids 48, 17 (1982).
4.Orcel, G., Phalippou, J., and Hcnch, L. L., J. Non-Cryst. Solids 82, 301 (1986).
5.de Larabilly, H. and Klein, L. C., J. Non-Cryst. Solids 102, 269 (1988).
6.Lee, G. S., Messing, G. L., and De Laat, F. G. A., J. Non-Cryst. Solids 16, 125 (1990).
7.Covino, J., De Laat, F. G. A., and Welsbie, R. A., J. Non-Cryst. Solids 82, 329 (1986).
8.de Lambilly, H. and Klein, L. C., J. Non-Cryst. Solids 109, 69 (1989).
9.Jang, H. M., Kim, K. S., and Jung, C. J., J. Kor. Ceram. Soc. 28, 365 (1991).
10.Yang, J., Sakka, S., Yoko, T., and Kozuka, H., J. Mater. Sci. 26, 1827 (1991).
11.Streitwieser, A., Jr. and Hcathcock, C. H., Introduction to Organic Chemistry, 2nd ed. (Macmillan Pub. Co., Inc., New York, 1981), p. 369.
12.Hogg, R., Healy, T. W., and Fuerstenau, D. W., Trans. Faraday Soc. 62, 1638 (1966).
13.Wiersema, P. H., Loeb, A. L., and Overbeek, J. Th. G., J. Colloid Interf. Sci. 22, 78 (1966).
14. JCPDS, Powder Diffraction Files, Set. 31–706 (1981).
15.Knickerbocker, S., Tuzzolo, M. R., and Lawhorne, S., J. Am. Ceram. Soc. 72, 1873 (1989).
16.Roy, B. N., J. Am. Ceram. Soc. 73, 846 (1990).
17.Orcel, G. and Hcnch, L. L., in Science of Ceramic Chemical Processing, edited by Hench, L. L. and Ulrich, D. R. (John Wiley and Sons, New York, 1986), p. 224.
18.Kumagai, M. and Messing, G. L., J. Am. Ceram. Soc. 67, C230 (1984).
19.Matusita, K. and Sakka, S., J. Non-Cryst. Solids 38 & 39, 741 (1980).
20.Matusita, K., Komatsu, T., and Yokota, R., J. Mater. Sci. 19, 291 (1984).

Related content

Powered by UNSILO

Chemical processing and densification characteristics of lithium aluminosilicate (LAS) gels

  • Hyun M. Jang (a1), Kwang S. Kim (a2) and Chang J. Jung (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.