Skip to main content Accessibility help
×
Home

Climatological significance of δ18 O in precipitation and ice cores: a case study at the head of the Ürümqi river, Tien Shan, China

  • Hou Shugui (a1), Qin Dahe (a1), Paul A. Mayewski (a2), Yang Qinzhao (a2), Ren Jiawen (a1), Li Zhongqin (a1) and Xiao Cunde (a1)...

Abstract

Stable-oxygen-isotope ratios 18O) of precipitation and ice-core samples collected from the headwaters of the Urümqi river, Tien Shan, China, were used to test the relationship between δ18O and contemporaneous surface air temperature (Ta). A strong temporal relationship is found between δ18O in precipitation and Ta, particularly for the monthly averages which remove synoptic-scale influences such as changes in condensation level, condensation temperature and moisture sources ( Yao and others, 1996). Linear fits as high as 0.95‰° C-1 for precipitation events and 1.23‰° C-1 for monthly averages are found. Although the δ18 O amplitude in ice cores drilled at the nearby Ürümqi glacier No.1(~2 km from the precipitation sampling site) decreased dramatically compared to the precipitation samples, the ice-core records of annually averaged δ18 are still positively correlated with contemporaneous air temperature, especially summer air temperature, at the nearby Daxigou meteorological station. Nevertheless, the relationship between the ice-core δ18O records and contemporaneous air temperature is less significant than that for the precipitation samples due to depositional and post-depositional modification processes, which are highlighted by the successive snow-pit δ18O profiles from the Ürümqi glacier No.1. Our results might extend the application of high-altitude and subtropical ice-core δ18OTa records for paleoclimate reconstruction.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Climatological significance of δ18 O in precipitation and ice cores: a case study at the head of the Ürümqi river, Tien Shan, China
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Climatological significance of δ18 O in precipitation and ice cores: a case study at the head of the Ürümqi river, Tien Shan, China
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Climatological significance of δ18 O in precipitation and ice cores: a case study at the head of the Ürümqi river, Tien Shan, China
      Available formats
      ×

Copyright

References

Hide All
Arnason, B. 1969. Equilibrium constant for the fractionation of deuterium between ice and water. J. Phys.Chem., 73(10), 3491-3494.
Búason, T. 1972. Equation of isotope fractionation between ice and water in a melting snow column with continuous rain and percolation. J. Glaciol. 11(63), 387-405.
Chinese Academy of Sciences, 1982-95 Annual report of the glacier monitoring station, 1982-1995. Lanzhou, Chinese Academy of Sciences. (Reports 1-13.) [In Chinese.]
Covey, C. and Haagenson, P. L. 1984. A model of oxygen isotope composition of precipitation: implications for paleoclimate data. J. Geophys. Res., 89(D3), 4647-4655.
Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus, 16(4), 436-468.
Dansgaard, W., Johnsen, S.J. Clausen, H. B and Gundestrup, N. 1973. Stable isotope glaciology. Medd. Gronl., 197(2.
Fisher, D. A. and Alt, M.T., 1985. A global oxygen isotope model -semiempirical, zonally averaged. Ann Glaciol., 7, 117-124.
Fisher, D. A., Koerner, R. M, Patersun, W.S.B. Dansgaard, W, Gundestrup, N and Reeh, N. 1983. Effect of wind scouring on climatic records from ice-core oxygen-isotope profiles. Nature, 301(5897), 205-209.
Gedzelman, S.D.and Lawrence, J. R. 1982. The isotopic composition of cyclonic precipitation. J. Appl. Meteorol., 21, 1385-1404.
Grabczak, J., Niewodniczanski, J. and Rózanski., K. 1983. Isotope stratification in high mountain glaciers; examples from the Peruvian Andes and Himalaya. J. Glaciol., 29(103),417-424.
Grootes., P., Stuiver, M, Thompson, L.G. and Mosley-Thompson., E. 1989. Oxygen isotope changes in tropical ice, Quelccaya. Peru. J. Geophys. Res., 94(Dl), 1187-1194.
Ingraham, N. L. and Taylor, B. E. 1986. Hydrogen isotope study of large-scale meteoric water transport in northern California and Nevada. J. Hydrol., 85, 183-197.
Jouzel, J. and Merlivat, L. 1984. Deuterium and oxygen 18 in precipitation: modeling of the isotopic effects during snow formation, J. Geophys. Res., 89(D7), 11,749-11,757.
Jouzel, J., Russell, G. L, Suozzo, R.J. Koster, R. D, White, J.W.C. and Broecker, W. S, 1987. Simulations of the HDO and H2 18O atmospheric cycles using the NASA GISS general circulation model: the seasonal cycle for present-day conditions. J. Geophys. Res., 92(D12), 14,739-14,760.
Koerner, R. M. 1997. Some comments on climatic reconstructions from ice cores drilled in areas of high melt. J. Glaciol., 43(143),90-97; Erratum 43(144), 375-376.
Jijun, Li and Shuying., Xu 1984. The distribution of glaciers on the Qinghai-Xizang plateau and its relationship to atmospheric circulation. In Miller, K.J., ed. The International Karakoram Project. Proceedings of the International Conference. Vol. 1. Cambridge, Cambridge University Press, 84-93.
Miller, M. M., Leventhal, J. S and Libby, W. F. 1965. Tritium in Mt. Everest ice -annual glacier accumulation and climatology at great equatorial altitudes. J .Geophys. Res., 70(16),3885-3888.
Moser, H. and Stichler, W. 1980. Environmental isotopes in ice and snow. In Fritz, P. and Fonte, J. C, eds. Handbook of environmental isotope geochemistry. Vol.1. The terrestrial environment. Amsterdam, Elsevier Publishing Co., 141-178.
Mosley-Thompson, E., Thompson, L. G, Grootes, P.M. and Gundestrup, N. 1990. Little Ice Age (neoglacial) paleoenvironmental conditions at Siple Station, Antarctica. Ann. Glaciol., 14, 199-204.
Peel, D. A. 1992. Ice core evidence from the Antarctic Peninsula region. In Bradley, R. S. and Jones, P.D. eds. Climate since A.D. 1500. London and New York, Routledge, 549-571.
Reiter., E. 1981. The Tibet connection. Nat Hist., 90(9), 65-71.
Rozanski, K., Araguas-Araguas, L. and Gonfiantini, R. 1992. Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate. Science, 2489 81-985.
Thompson, L. G., Xiaoling, W, Mosley-Thompson, E. and Zichu, X. 1988. Climatic records from the Dunde Ice Cap, China. Ann. Glaciol., 10,178-182.
Thompson, L. G. and 9 others. 1989. Holocene-Late Pleistocene climatic ice core records from Qinghai-Tibetan Plateau. Science, 246(4929), 474-477.
Thompson, L. G. and 6 others. 1993. "Recent warming": ice core evidence from tropical ice cores with emphasis on central Asia. Global and Planetary Change, 7(1-3),145-156.
Thompson, L.G. and 9 others. 1997. Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan ice core. Science, 276(5320), 1821-1825.
Wake, C. P. and Stiévenard., M. 1995. The amount effect and oxygen isotope ratios recorded in Himalayan snow. In Mikami, T., Matsumoto, E, Ohta, S and Sweda, T, eds. Paleoclimate end environmental variability in Austral-Asian transect during the past 2000 years. Nagoya, Nagoya University, 236-241.
Watanabe, O., Wu, X, Ikegami, K and Ageta, Y. 1983. [Oxygen isotope characteristics of glaciers in the eastern Tian Shan.] J. Glaciol. Geocryol., 5(3), 101-112. [In Chinese with English abstract.]
Wushiki, H. 1977a. Deuterium content in the Himalayan precipitation at Khumbu District, observed in 1974/1975. Seppyo, J. Jpn. Soc. Snow ice, Special Issue 39, 50-56.
Wushiki, H. 1977b. Ice cliffs and exposed stratigraphy of Kongma Glacier, Khumbu. Seppyo, J. Jpn. Soc .Snow ice, Special Issue 39, 22-25.
Tandong, Yao Thompson, L. G, Mosley-Thompson, E. Zhihong, Yang Xinping, Zhang and Ping-Nan., Lin 1996. Climatological significance of δ18O in north Tibetan ice cores. J. Geophys. Res., 101 (D23), 29, 531-29,538.

Climatological significance of δ18 O in precipitation and ice cores: a case study at the head of the Ürümqi river, Tien Shan, China

  • Hou Shugui (a1), Qin Dahe (a1), Paul A. Mayewski (a2), Yang Qinzhao (a2), Ren Jiawen (a1), Li Zhongqin (a1) and Xiao Cunde (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed