Skip to main content Accessibility help
×
Home

Wentzel–Kramers–Brillouin approximation for atmospheric waves

  • Oleg A. Godin (a1) (a2)

Abstract

Ray and Wentzel–Kramers–Brillouin (WKB) approximations have long been important tools in understanding and modelling propagation of atmospheric waves. However, contradictory claims regarding the applicability and uniqueness of the WKB approximation persist in the literature. Here, we consider linear acoustic–gravity waves (AGWs) in a layered atmosphere with horizontal winds. A self-consistent version of the WKB approximation is systematically derived from first principles and compared to ad hoc approximations proposed earlier. The parameters of the problem are identified that need to be small to ensure the validity of the WKB approximation. Properties of low-order WKB approximations are discussed in some detail. Contrary to the better-studied cases of acoustic waves and internal gravity waves in the Boussinesq approximation, the WKB solution contains the geometric, or Berry, phase. The Berry phase is generally non-negligible for AGWs in a moving atmosphere. In other words, knowledge of the AGW dispersion relation is not sufficient for calculation of the wave phase.

Copyright

Corresponding author

Email address for correspondence: Oleg.Godin@noaa.gov

References

Hide All
Akmaev, R. A. 2011 Whole atmosphere modeling: Connecting terrestrial and space weather. Rev. Geophys. 49, RG4004.
Ardhuin, F. & Herbers, T. H. C. 2013 Noise generation in the solid Earth, oceans and atmosphere, from nonlinear interacting surface gravity waves in finite depth. J. Fluid Mech. 716, 316348.
Astafyeva, E., Shalimov, S., Olshanskaya, E. & Lognonné, P. 2013 Ionospheric response to earthquakes of different magnitudes: larger quakes perturb the ionosphere stronger and longer. Geophys. Res. Lett. 40, 16751681.
Babich, V. M. 1961 Propagation of Rayleigh waves along the surface of a homogeneous elastic body of arbitrary shape. Dokl. Akad. Nauk SSSR 137, 12631266.
Babich, V. M. & Kiselev, A. P. 2004 Nongeometrical phenomena in propagation of elastic surface waves. In Surface Waves in Anisotropic and Laminated Bodies and Defects Detection (ed. Goldstein, R. V. & Maugin, G. A.), pp. 119129. Kluwer.
Berry, M. V. 1984 Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392 (1802), 4557.
Berry, M. V. 1990 Budden & Smith’s ‘additional memory’ and the geometric phase. Proc. R. Soc. Lond. A 431, 531537.
Berry, M. V. 2010 Geometric phase memories. Nat. Phys. 6, 148150.
Bohm, A., Mostafazadeh, A., Koizumi, H., Niu, Q. & Zwanziger, J. 2003 The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics. Springer.
Brekhovskikh, L. M. 1960 Waves in Layered Media, pp. 168–171 and 193–198. Academic.
Brekhovskikh, L. M. & Godin, O. A. 1998 Acoustics of Layered Media 1: Plane and Quasi-Plane Waves, 2nd edn. Springer.
Brekhovskikh, L. M. & Godin, O. A. 1999 Acoustics of Layered Media 2: Point Sources and Bounded Beams, 2nd edn. Springer.
Bretherton, F. P. 1968 Propagation in slowly varying waveguides. Proc. R. Soc. Lond. A 302, 555567.
Bretherton, F. P. 1969 Lamb waves in a nearly isothermal atmosphere. Q. J. R. Meteorol. Soc. 95, 754757.
Broutman, D., Rottman, J. W. & Eckermann, S. D. 2004 Ray methods for internal waves in the atmosphere and ocean. Annu. Rev. Fluid Mech. 36, 233253.
Budden, K. G. & Smith, M. S. 1976 Phase memory and additional memory in WKB solutions for wave propagation in stratified media. Proc. R. Soc. Lond. A 350 (1660), 2746.
Coïsson, P., Lognonné, P., Walwer, D. & Rolland, L. M. 2015 First tsunami gravity wave detection in ionospheric radio occultation data. Earth Space Sci. 2, 125133.
Duvall, T. L., Jefferies, S. M., Harvey, J. W. & Pomerantz, M. A. 1993 Time–distance helioseismology. Nature 362, 430432.
Einaudi, F. & Hines, C. O. 1970 WKB approximation in application to acoustic-gravity waves. Can. J. Phys. 48, 14581471.
Einaudi, F. & Hines, C. O. 1974 WKB approximation in application to acoustic-gravity waves. In The Upper Atmosphere in Motion (ed. Hines, C. O.), Geophys. Monogr. Ser., vol. 18, pp. 508530. American Geophysical Union.
Fedoryuk, M. 1987 Méthodes Asymptotiques pour les Equations Différentielles Ordinaires Linéaires. Mir.
Fouchet, T., Guerlet, S., Strobel, D. F., Simon-Miller, A. A., Bézard, B. & Flasar, F. M. 2008 An equatorial oscillation in Saturn’s middle atmosphere. Nature 453, 200202.
Fritts, D. C. & Alexander, M. J. 2003 Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 41, 1003.
Frömann, N. & Frömann, P. O. 1965 JWKB Approximation. Contributions to the Theory. North-Holland.
Fuller-Rowell, T. J., Akmaev, R. A., Wu, F., Anghel, A., Maruyama, N., Anderson, D. N., Codrescu, M. V., Iredell, M., Moorthi, S., Juang, H.-M., Hou, Y.-T. & Millward, G. 2008 Impact of terrestrial weather on the upper atmosphere. Geophys. Res. Lett. 35, L09808.
Fuller-Rowell, T., Wu, F., Akmaev, R., Fang, T.-W. & Araujo-Pradere, E. 2010 A whole atmosphere model simulation of the impact of a sudden stratospheric warming on thermosphere dynamics and electrodynamics. J. Geophys. Res. 115, A00G08.
Garcia, R. F., Doornbos, E., Bruinsma, S. & Hebert, H. 2014 Atmospheric gravity waves due to the Tohoku-Oki tsunami observed in the thermosphere by GOCE. J. Geophys. Res. 119, 44984506.
Garrett, C. J. R. 1968 On the interaction between internal gravity waves and a shear flow. J. Fluid Mech. 34, 711720.
Geller, M. A., Alexander, M. J., Love, P. T., Bacmeister, J., Ern, M., Hertzog, A., Manzini, E., Preusse, P., Sato, K., Scaife, A. A. & Zhou, T. 2013 A comparison between gravity wave momentum fluxes in observations and climate models. J. Clim. 26, 63836405.
Gill, A. E. 1982 Atmosphere–Ocean Dynamics. Academic.
Godin, O. A. 1987 A new form of the wave equation for sound in a general layered fluid. In Progress in Underwater Acoustics (ed. Merklinger, H. M.), pp. 337349. Plenum.
Godin, O. A. 1997 Reciprocity and energy theorems for waves in a compressible inhomogeneous moving fluid. Wave Motion 25, 143167.
Godin, O. A. 2012a Incompressible wave motion of compressible fluids. Phys. Rev. Lett. 108, 194501.
Godin, O. A. 2012b Acoustic-gravity waves in atmospheric and oceanic waveguides. J. Acoust. Soc. Am. 132, 657669.
Godin, O. A. 2014a Shear waves in inhomogeneous, compressible fluids in a gravity field. J. Acoust. Soc. Am. 135, 10711082.
Godin, O. A. 2014b Dissipation of acoustic-gravity waves: an asymptotic approach. J. Acoust. Soc. Am. 136, EL411EL417.
Godin, O. A. 2015 Finite-amplitude acoustic-gravity waves: exact solutions. J. Fluid Mech. 767, 5264.
Godin, O. A. & Fuks, I. M. 2012 Transmission of acoustic-gravity waves through gas–liquid interfaces. J. Fluid Mech. 709, 313340.
Godin, O. A., Zabotin, N. A. & Bullett, T. W. 2015 Acoustic-gravity waves in the atmosphere generated by infragravity waves in the ocean. Earth Planet. Space 67, 47.
Gossard, E. & Hooke, W. 1975 Waves in the Atmosphere. Elsevier.
Grimshaw, R. 1975 Internal gravity waves: critical layer absorption in a rotating fluid. J. Fluid Mech. 70, 287304.
Hargreaves, J. K. & Gadsden, M. 1992 The Solar-Terrestrial Environment. Cambridge University Press.
Heading, J. 1962 An Introduction to Phase-Integral Methods. Wiley.
Hines, C. O. 1960 Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys. 38, 14411481.
Jia, J. Y., Preusse, P., Ern, M., Chun, H. Y., Gille, J. C., Eckermann, S. D. & Riese, M. 2014 Sea surface temperature as a proxy for convective gravity wave excitation: a study based on global gravity wave observations in the middle atmosphere. Ann. Geophys. 32, 13731394.
Jones, R. M. & Georges, T. M. 1976 Propagation of acoustic-gravity waves in a temperature- and wind-stratified atmosphere. J. Acoust. Soc. Am. 59, 765779.
Karal, F. G. & Keller, J. B. 1964 Geometrical theory of elastic surface-wave excitation and propagation. J. Acoust. Soc. Am. 36, 3240.
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.
Lighthill, J. 1978 Waves in Fluids. Cambridge University Press.
Liu, H.-L., Foster, B. T., Hagan, M. E., McInerney, J. M., Maute, A., Qian, L., Richmond, A. D., Roble, R. G., Solomon, S. C., Garcia, R. R., Kinnison, D., Marsh, D. R., Smith, A. K., Richter, J., Sassi, F. & Oberheide, J. 2010 Thermosphere extension of the whole atmosphere community climate model. J. Geophys. Res. 115, A12302.
Makela, J. J., Lognonné, P., Hébert, H., Gehrels, T., Rolland, L., Allgeyer, S., Kherani, A., Occhipinti, G., Astafyeva, E., Coïsson, P., Loevenbruck, A., Clévédé, E., Kelley, M. C. & Lamouroux, J. 2011 Imaging and modeling the ionospheric airglow response over Hawaii to the tsunami generated by the Tohoku earthquake of 11 March 2011. Geophys. Res. Lett. 38, L13305.
Maruyama, T., Tsugawa, T., Kato, H., Ishii, M. & Nishioka, M. 2012 Rayleigh wave signature in ionograms induced by strong earthquakes. J. Geophys. Res. 117, A08306.
Maslov, V. P. & Fedoriuk, M. V. 1981 Semi-Classical Approximation in Quantum Mechanics. Reidel.
Matoza, R. S., Vergoz, J., Le Pichon, A., Ceranna, L., Green, D. N., Evers, L. G., Ripepe, M., Campus, P., Liszka, L., Kvaerna, T., Kjartansson, E. & Hoskuldsson, A. 2011 Long-range acoustic observations of the Eyjafjallajökull eruption, Iceland, April–May 2010. Geophys. Res. Lett. 38, L06308.
Miropol’sky, Yu. Z. 2001 Dynamics of Internal Gravity Waves in the Ocean. Kluwer.
Nazarenko, S., Kevlahan, N. R. & Dubrulle, B. 1999 WKB theory for rapid distortion of inhomogeneous turbulence. J. Fluid Mech. 390, 325348.
Nishida, K., Kobayashi, N. & Fukao, Y. 2013 Background Lamb waves in the Earth’s atmosphere. Geophys. J. Intl 196, 312316.
Occhipinti, G., Rolland, L., Lognonné, P. & Watada, S. 2013 From Sumatra 2004 to Tohoku-Oki 2011: the systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes. J. Geophys. Res. 118, 36263636.
Olver, F. W. J. 1974 Asymptotics and Special Functions. Academic.
Ostashev, V. E. 1987 Equation for acoustic and gravity-waves in a stratified moving medium. Sov. Phys. Acoust. 33, 9596.
Ostashev, V. E. 1997 Acoustics in Moving Inhomogeneous Media. E&FN Spon.
Petrukhin, N. S., Pelinovsky, E. N. & Batsyna, E. K. 2011 Reflectionless propagation of acoustic waves through the Earth’s atmosphere. JETP Lett. 93, 564567.
Petrukhin, N. S., Pelinovsky, E. N. & Batsyna, E. K. 2012a Reflectionless propagation of acoustic waves in the solar atmosphere. Astron. Lett. 38, 388393.
Petrukhin, N. S., Pelinovsky, E. N. & Batsyna, E. K. 2012b Reflectionless acoustic gravity waves in the Earth’s atmosphere. Geomagn. Aeron. 52, 814819.
Petrukhin, N. S., Pelinovsky, E. N. & Talipova, T. G. 2012c Nonreflected vertical propagation of acoustic waves in a strongly inhomogeneous atmosphere. Izv. Atmos. Ocean. Phys. 48, 169173.
Pierce, A. D. 1965 Propagation of acoustic-gravity waves in a temperature- and wind-stratified atmosphere. J. Acoust. Soc. Am. 37, 218227.
Pitteway, M. L. V. & Hines, C. O. 1965 The reflection and ducting of atmospheric acoustic-gravity waves. Can. J. Phys. 43, 22222243.
Podesta, J. J. 2005 Compressible fluid model for the seismic waves generated by a sunquake. Solar Phys. 232, 123.
Schirber, S., Manzini, E., Krismer, T. & Giorgetta, M. 2014 The quasi-biennial oscillation in a warmer climate: sensitivity to different gravity wave parameterizations. Clim. Dyn. 44, 112.
Shapere, A. & Wilczek, F. (Ed.) 1989 Geometric Phases in Physics, World Scientific.
Tatarskiy, V. I. 1979 On the theory of sound propagation in a stratified atmosphere. Izv. Atmos. Ocean. Phys. 15, 795801.
Tromp, J. & Dahlen, F. A. 1992 The Berry phase of a slowly varying waveguide. Proc. R. Soc. Lond. A 437 (1900), 329342.
Ursin, B. 1983 Review of elastic and electromagnetic wave propagation in horizontally layered media. Geophysics 48, 10631081.
Vadas, S. L. & Liu, H. 2009 Generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively generated gravity waves. J. Geophys. Res. 114, A10310.
Vadas, S. L. & Nicolls, M. J. 2012 The phases and amplitudes of gravity waves propagating and dissipating in the thermosphere: theory. J. Geophys. Res. 117, A05322.
Watada, S. 2009 Radiation of acoustic and gravity waves and propagation of boundary waves in the stratified fluid from a time-varying bottom boundary. J. Fluid Mech. 627, 361377.
Zabotin, N. A., Godin, O. A., Sava, P. C. & Zabotina, L. Y. 2014 Tracing three-dimensional acoustic wavefronts in inhomogeneous, moving media. J. Comput. Acoust. 22, 1450002.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Wentzel–Kramers–Brillouin approximation for atmospheric waves

  • Oleg A. Godin (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed