Skip to main content Accessibility help
×
Home

Transitional shock-wave/boundary-layer interactions in hypersonic flow

  • N. D. Sandham (a1), E. Schülein (a2), A. Wagner (a2), S. Willems (a3) and J. Steelant (a4)...

Abstract

Strong interactions of shock waves with boundary layers lead to flow separations and enhanced heat transfer rates. When the approaching boundary layer is hypersonic and transitional the problem is particularly challenging and more reliable data is required in order to assess changes in the flow and the surface heat transfer, and to develop simplified models. The present contribution compares results for transitional interactions on a flat plate at Mach 6 from three different experimental facilities using the same instrumented plate insert. The facilities consist of a Ludwieg tube (RWG), an open-jet wind tunnel (H2K) and a high-enthalpy free-piston-driven reflected shock tunnel (HEG). The experimental measurements include shadowgraph and infrared thermography as well as heat transfer and pressure sensors. Direct numerical simulations (DNS) are carried out to compare with selected experimental flow conditions. The combined approach allows an assessment of the effects of unit Reynolds number, disturbance amplitude, shock impingement location and wall cooling. Measures of intermittency are proposed based on wall heat flux, allowing the peak Stanton number in the reattachment regime to be mapped over a range of intermittency states of the approaching boundary layer, with higher overshoots found for transitional interactions compared with fully turbulent interactions. The transition process is found to develop from second (Mack) mode instabilities superimposed on streamwise streaks.

Copyright

Corresponding author

Email address for correspondence: n.sandham@soton.ac.uk

References

Hide All
Arnal, D. & Delery, J. P.2004 Laminar–turbulent transition and shock wave/boundary layer interaction. Tech. Rep. RTO-EN-AVT-116. NATO RTO.
Babinsky, H. & Harvey, J. 2011 Shock Wave–Boundary-Layer Interactions. Cambridge University Press, Cambridge.
Benay, R., Chanetz, B., Mangin, B., Vandomme, L. & Perraud, J. 2006 Shock wave/transitional boundary-layer interactions in hypersonic flow. AIAA J. 44 (6), 12431254.
Bur, R. & Chanetz, B. 2009 Experimental study on the PRE-X vehicle focusing on the transitional shock-wave/boundary-layer interactions. Aerosp. Sci. Technol. 13 (7), 393401.
Canepa, E., Ubaldi, M. & Zunini, P.2002 Experiences in the application of intermittency detection techniques to hot-film signals in transitional boundary layers. In 16th Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines. Cambridge, UK.
Cary, A. M. & Bertram, M. H.1974 Engineering prediction of turbulent skin friction and heat transfer in high-speed flow. NASA TN D-7507.
Cook, W. J. & Felderman, E. J. 1966 Reduction of data from thin-film heat transfer gages: a concise numerical technique. AIAA J. 4 (3), 561562.
De Tullio, N.2013 Receptivity and transtion to turbulence of supersonic boundary layers with surface roughness. PhD thesis, University of Southampton, Southampton, UK.
Delery, J. M. 1985 Shock wave/turbulent boundary layer interaction and its control. Prog. Aerosp. Sci. 22, 209280.
Dolling, D. S. 2001 Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39 (8), 15171531.
Van Dreist, E. R. 1956 The problem of aerodynamic heating. Aeronaut. Eng. Rev. 2641.
Duan, L. & Martin, M. P. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy. J. Fluid Mech. 684, 2559.
Fiala, A., Hillier, R., Mallinson, S. G. & Wijesinghe, H. S. 2006 Heat transfer measurement of turbulent spots in a hypersonic blunt-body boundary layer. J. Fluid Mech. 555, 81111.
Hakkinen, R. J., Greber, I., Trilling, L. & Abarbanel, S. S.1959 The interaction of an oblique shock wave with a laminar boundary layer. Tech. Rep. 2-18-59W. NASA Memo.
Hannemann, K., Martinez Schramm, J. & Karl, S.2008 Recent extensions to the high enthalpy shock tunnel Göttingen (HEG). In Proceedings of the 2nd International ARA Days, pp. 2008-10-20–2008-10-23. Arcachon, France.
Hedley, T. B. & Keffer, J. F. 1974 Turbulent non-turbulent decisions in an intermittent flow. J. Fluid Mech. 64 (JUL24), 625644.
Jacobs, R. G. & Durbin, P. A. 2001 Simulations of bypass transition. J. Fluid Mech. 428, 185212.
Katzer, E. 1989 On the lengthscales of laminar shock/boundary-wayer interaction. J. Fluid Mech. 206, 477496.
Kendall, J. M.. 1975 Wind-tunnel experiments relating to supersonic and hypersonic boundary-layer transition. AIAA J. 13 (3), 290299.
Knauss, H., Roediger, T., Bountin, D. A., Smorodsky, B. V., Maslov, A. A. & Srulijes, J. 2009 Novel sensor for fast heat-flux measurements. J. Spacecr. Rockets 46 (2), 255265.
Krishnan, L. & Sandham, N. D. 2007 Strong interaction of a turbulent spot with a shock-induced separation bubble. Phys. Fluids 19, 016102.
Langtry, R. B. & Menter, F. R. 2009 Correlation-based transition modeling for unstructured paralleized computational fluid dynamics codes. AIAA J. 47 (12), 28942906.
Laurence, S. J., Wagner, A., Hannemann, K., Wartemann, V., Luedeke, H., Tanno, H. & Itoh, K. 2012 Time-resolved visualization of instability waves in a hypersonic boundary layer. AIAA J. 50 (1), 243246.
Mack, L. M.1984 Boundary layer stability theory. Tech. Rep. 705. AGARD.
Narasimha, R. 1985 The laminar–turbulent transition zone in the boundary layer. Prog. Aerosp. Sci. 22 (1), 2980.
Neumann, R. D.1972 Special topics in hypersonic flow. Tech. Rep. 42. AGARD Lecture Series.
Pagella, A., Babucke, A. & Rist, U. 2004 Two-dimensional numerical investigations of small-amplitude disturbances in a boundary layer at $Ma=4.8$ : Compression corner versus impinging shock wave. Phys. Fluids 16 (7), 22722281.
Pate, S. R. & Schueler, C. J. 1969 Radiated aerodynamic noise effects on boundary-layer transition in supersonic and hypersonic wind tunnels. AIAA J. 7, 450457.
Piponniau, S., Dussauge, J. P., Debieve, J. F. & Dupont, P. 2009 A simple model for low-frequency unsteadiness in shock-induced separation. J. Fluid Mech. 629, 87108.
Redford, J. A., Sandham, N. D. & Roberts, G. T. 2012 Numerical simulations of turbulent spots in supersonic boundary layers: effects of Mach number and wall temperature. Prog. Aerosp. Sci. 52 (SI), 6779.
Renk, K. F., Betz, J., Zeuner, S., Lengfellner, H. & Prettl, W. 1994 Thermopile effect due to laser-radiation heating in thin-films of high-T-C materials. Physica C 235 (1), 3740.
Reshotko, E. 1969 Stability theory as a guide to the evaluation of transition data. AIAA J. 7, 10861091.
Reshotko, E. 2001 Transient growth: a factor in bypass transition. Phys. Fluids 13 (5), 10671075.
Robinet, J.-Ch. 2007 Bifurcations in shock-wave/laminar-boundary-layer interaction: global instability approach. J. Fluid Mech. 579, 85112.
Sandham, N. D. & Lüdeke, H. 2009 Numerical study of Mach 6 boundary-layer stabilization by means of a porous surface. AIAA J. 47 (9), 22432252.
Savitzky, A. & Golay, M. J. E. 1964 Smoothing and differentiation of data by simplified least squares procedures. Analyt. Chem. 36 (8), 16271639.
Schneider, S. P. 1995 Improved methods for measuring laminar–turbulent intermittency in boundary layers. Exp. Fluids 18, 370375.
Schneider, S. P. 2008 Development of hypersonic quiet tunnels. J. Spacecr. Rockets 45 (4), 641664.
Schultz, D. L. & Jones, T. V.1973 Heat transfer measurements in short-duration hypersonic facilities. Tech. Rep. 165. AGARD-AG.
Steelant, J. & Dick, E. 1996 Modelling of bypass transition with conditioned Navier–Stokes equations coupled to an intermittency transport equation. Intl J. Numer. Meth. Fluids 23, 193220.
Steelant, J. & Dick, E. 2001 Modeling of laminar–turbulent transition for high freestream turbulence. Trans. ASME J. Fluids Engng 123, 2230.
Stewartson, K. & Williams, P. W. 1969 Self-induced separation. Proc. R. Soc. Lond. A 312 (1509), 181206.
Thompson, K. W. 1987 Time-dependent boundary-conditions for hyperbolic systems. J. Comput. Phys. 68 (1), 124.
Touber, E. & Sandham, N. D. 2009 Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn. 23, 79107.
Touber, E. & Sandham, N. D. 2011 Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions. J. Fluid Mech. 671, 417465.
Wagner, A., Kuhn, M., Schramm, J. M. & Hannemann, K. 2013 Experiments on passive hypersonic boundary layer control using ultrasonically absorptive carbon-carbon material with random microstructure. Exp. Fluids 54 (10), 1606.
White, F. M. 2006 Viscous Fluid Flow, 3rd edn. McGraw-Hill.
Willems, S. & Guelhan, A. 2014 Experiments on the effect of laminar–turbulent transition on the SWBLI in H2K at Mach 6. Exp. Fluids (submitted).
Yao, Y., Krishnan, L., Sandham, N. D. & Roberts, G. T. 2007 The effect of Mach number on unstable disturbances in shock/boundary-layer interactions. Phys. Fluids 19, 054104.
Yee, H. C., Sandham, N. D. & Djomehri, M. J. 1999 Low-dissipative high-order shock-capturing methods using characteristic-based filters. J. Comput. Phys. 150 (1), 199238.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Transitional shock-wave/boundary-layer interactions in hypersonic flow

  • N. D. Sandham (a1), E. Schülein (a2), A. Wagner (a2), S. Willems (a3) and J. Steelant (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.