Skip to main content Accessibility help
×
Home

A study of the asymmetric shock reflection configurations in steady flows

  • Yuan Tao (a1), Weidong Liu (a1), Xiaoqiang Fan (a1), Bin Xiong (a1), Jiangfei Yu (a2) and Mingbo Sun (a1)...

Abstract

In this paper the asymmetric shock reflection configurations in two-dimensional steady flows have been studied theoretically. For an overall Mach reflection, it is found that the horizontal distance between both triple points in the Mach stem is related to the angles of two slip streams. Based on the features of the converging stream tube, several assumptions are put forward to perform better the wave configurations near the slip streams. Therefore, we present an analytical model here to describe the asymmetric overall Mach reflection configurations which agrees well with the computational and experimental results.

Copyright

Corresponding author

Email address for correspondence: WDliu@nudt.edu.cn

References

Hide All
Azevedo, D. J. & Liu, C. S. 1993 Engineering approach to the prediction of shock patterns in bounded high-speed flows. AIAA J. 31, 8390.
Bai, C. Y. & Wu, Z. N. 2017 Size and shape of shock waves and slipsline foe Mach reflection in steady flow. J. Fluid Mech. 818, 116140.
Ben-Dor, G. 1999 Hysteresis phenomena in shock wave reflections in steady flows. J. Mater. Process. Technol. 85, 1519.
Ben-Dor, G. 2007 Shock Wave Reflection Phenomena. Springer.
Chpoun, A. & Lengrand, J. C. 1997 Confirmation experimentale d’un phenomene d’hysteresis lors de l’interaction de deux chocs obliques de familles differentes. C. R. Acad. Sci. Paris 324 (1), 18.
Chpoun, A., Passerel, D., Li, H. & Ben-Dor, G. 1995 Reconsideration of oblique shock wave reflections in steady flows. Part 1. Experimental investigation. J. Fluid Mech. 301, 1935.
Gao, B. & Wu, Z. N. 2010 A study of the flow structure for Mach reflection in steady supersonic flow. J. Fluid Mech. 656, 2950.
Hornung, H. G. & Mouton, C. A. 2008 Some more on transition between regular and Mach reflection of shock waves. In 38th Fluid Dynamics Conference and Exhibit, Washington, USA, AIAA.
Hornung, H. G., Oertel, H. & Sandeman, R. J. 1979 Transition to Mach reflection of shockwaves in steady and psuedo-steady flow with and without relaxation. J. Fluid Mech. 90, 541547.
Ivanov, M. S., Ben-Dor, G., Elperin, T., Kudryavtsev, A. N. & Khotyanovsky, D. V. 2002 The reflection of asymmetric shock waves in steady flows: a numerical investigation. J. Fluid Mech. 496, 7187.
Kudryavstsev, A. N., Khotyanosky, D. V. & Ivanov, M. S. 2000 Numerical simulation of asymmetrical steady shock wave interactions. In European Congress on Computational Methods in Applied Science and Engineering, Barcelona, Spain.
Li, H. & Ben-Dor, G. 1997 A parametric study of Mach reflection in steady flows. J. Fluid Mech. 341, 101125.
Li, H., Chpoun, A. & Ben-Dor, G. 1999 Analytical and experimental investigations of the reflection of asymmetric shock waves in steady flows. J. Fluid Mech. 390, 2543.
Mouton, C. A.2008 Transition between regular reflection and Mach reflection in the dual-solution domain. PhD thesis, California Institute of Technology.
Mouton, C. A. & Hornung, H. G. 2008 Experiments on the mechanism of inducing transition between regular and Mach reflection. Phys. Fluids 20, 126103.
von Neumann, J.1943 Oblique reflection of shocks. Explosive Research Rep. 12. Navy Department, Bureau of Ordnance, Washington, DC.
von Neumann, J.1945 Refraction, intersection and reflection of shock waves. NAVORD Rep. 203-245. Navy Department, Bureau of Ordnance, Washington, DC.
Tan, L. H., Ren, Y. X. & Wu, Z. N. 2006 Analytical and numerical study of the near flow field and shape of the Mach stem in steady flows. J. Fluid Mech. 546, 341364.
Tao, Y., Fan, X. Q. & Zhao, Y. L. 2015 Flow visualization for the evolution of the slip stream in steady shock reflection. J. Vis. 18, 2124.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed