Skip to main content Accessibility help
×
Home

Stokes flow of vesicles in a circular tube

  • Joseph M. Barakat (a1) and Eric S. G. Shaqfeh (a1) (a2) (a3)

Abstract

The inertialess motion of lipid-bilayer vesicles flowing through a circular tube is investigated via direct numerical simulation and lubrication theory. A fully three-dimensional boundary integral equation method, previously used to study unbounded and wall-bounded Stokes flows around freely suspended vesicles, is extended to study the hindered mobility of vesicles through conduits of arbitrary cross-section. This study focuses on the motion of a periodic train of vesicles positioned concentrically inside a circular tube, with particular attention given to the effects of tube confinement, vesicle deformation and membrane bending elasticity. When the tube diameter is comparable to the transverse dimension of the vesicle, axisymmetric lubrication theory provides an approximate solution to the full Stokes-flow problem. By combining the present numerical results with a previously reported asymptotic theory (Barakat & Shaqfeh, J. Fluid Mech., vol. 835, 2018, pp. 721–761), useful correlations are developed for the vesicle velocity $U$ and extra pressure drop $\unicode[STIX]{x0394}p^{+}$ . When bending elasticity is relatively weak, these correlations are solely functions of the geometry of the system (independent of the imposed flow rate). The prediction of Barakat & Shaqfeh (2018) supplies the correct limiting behaviour of $U$ and $\unicode[STIX]{x0394}p^{+}$ near maximal confinement, whereas the present study extends this result to all regimes of confinement. Vesicle–vesicle interactions, shape transitions induced by symmetry breaking, and unsteadiness introduce quantitative changes to $U$ and $\unicode[STIX]{x0394}p^{+}$ . By contrast, membrane bending elasticity can qualitatively affect the hydrodynamics at sufficiently low flow rates. The dependence of $U$ and $\unicode[STIX]{x0394}p^{+}$ on the membrane bending stiffness (relative to a characteristic viscous stress scale) is found to be rather complex. In particular, the competition between viscous forces and bending forces can hinder or enhance the vesicle’s mobility, depending on the geometry and flow conditions.

Copyright

Corresponding author

Email address for correspondence: esgs@stanford.edu

References

Hide All
Aouane, O., Farutin, A., Thiébaud, M., Benyoussef, A., Wagner, C. & Misbah, C. 2017 Hydrodynamic pairing of soft particles in a confined flow. Phys. Rev. Fluids 2 (6), 063102.
Aouane, O., Thiebaud, M., Benyoussef, A., Wagner, C. & Misbah, C. 2014 Vesicle dynamics in a confined Poiseuille flow: from steady-state to chaos. Phys. Rev. E 90 (3), 033011.
Bagchi, P. & Kalluri, R. M. 2010 Rheology of a dilute suspension of liquid-filled elastic capsules. Phys. Rev. E 81 (5), 056320.
Bagchi, P. & Kalluri, R. M. 2011 Dynamic rheology of a dilute suspension of elastic capsules: effect of capsule tank-treading, swinging and tumbling. J. Fluid Mech. 669, 498526.
Barakat, J. M. & Shaqfeh, E. S. G. 2018 The steady motion of a closely fitting vesicle in a tube. J. Fluid Mech. 835, 721761.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Brenner, H. 1970 Pressure drop due to the motion of neutrally buoyant particles in duct flows. J. Fluid Mech 43 (4), 641660.
Brenner, H. & Happel, J. 1958 Slow viscous flow past a sphere in a cylindrical tube. J. Fluid Mech. 4 (2), 195213.
Chen, T. C. & Skalak, R. 1970 Stokes flow in a cylindrical tube containing a line of spheroidal particles. Appl. Sci. Res. 22 (1), 403441.
Coupier, G., Farutin, A., Minetti, C., Podgorski, T. & Misbah, C. 2012 Shape diagram of vesicles in Poiseuille flow. Phys. Rev. Lett. 108 (1), 178106.
Danker, G., Biben, T., Podgorski, T., Verdier, C. & Misbah, C. 2007 Dynamics and rheology of a dilute suspension of vesicles: higher-order theory. Phys. Rev. E 76 (4), 041905.
Danker, G., Vlahovska, P. M. & Misbah, C. 2009 Vesicles in Poiseuille flow. Phys. Rev. Lett. 102 (14), 148102.
Deschamps, J., Kantsler, V. & Steinberg, V. 2009 Phase diagram of single vesicle dynamical states in shear flow. Phys. Rev. Lett. 102 (11), 118105.
Duffy, M. G. 1982 Quadrature over a pyramid or cube of integrands with a singularity at a vertex. SIAM J. Numer. Anal. 19 (6), 12601262.
Farutin, A. & Misbah, C. 2011 Symmetry breaking of vesicle shapes in Poiseuille flow. Phys. Rev. E 84 (1), 011902.
Farutin, A. & Misbah, C. 2012 Squaring, parity breaking, and S tumbling of vesicles under shear flow. Phys. Rev. Lett. 109 (24), 248106.
Farutin, A. & Misbah, C. 2014 Symmetry breaking and cross-streamline migration of three-dimensional vesicles in an axial Poiseuille flow. Phys. Rev. E 89 (4), 042709.
Frost, P. A. & Harper, E. Y. 1976 An extended Padé procedure for constructing global approximations from asymptotic expansions: an explication with examples. SIAM Rev. 18 (1), 6291.
Guckenberger, A., Schraml, M. P., Chen, P. G., Leonetti, M. & Gekle, S. 2016 On the bending algorithms for soft objects in flows. Comput. Phys. Commun. 207, 123.
Halpern, D. & Secomb, T. W. 1989 The squeezing of red blood cells through capillaries with near-minimal diameters. J. Fluid Mech. 203, 381400.
Hasimoto, H. 1959 On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5 (2), 317328.
Helfrich, W. 1973 Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. 28c (11), 693703.
Hochmuth, R. M. & Sutera, S. P. 1970 Spherical caps in low Reynolds-number tube flow. Chem. Engng Sci. 25 (4), 593604.
Janssen, P. J. A., Baron, M. D., Anderson, P. D., Blawzdziewicz, J., Loewenberg, M. & Wajnryb, E. 2012 Collective dynamics of confined rigid spheres and deformable drops. Soft Matt. 8 (28), 74957506.
Jenkins, J. T. 1977 Static equilibrium configurations of a model red blood cell. J. Math. Biol. 4 (2), 149169.
Kantsler, V., Segre, E. & Steinberg, V. 2008a Critical dynamics of vesicle stretching transition in elongational flow. Phys. Rev. Lett. 101 (4), 048101.
Kantsler, V., Segre, E. & Steinberg, V. 2008b Dynamics of interacting vesicles and rheology of vesicle suspension in shear flow. Europhys. Lett. 82 (5), 58005.
Kantsler, V. & Steinberg, V. 2006 Transition to tumbling and two regimes of tumbling motion of a vesicle in shear flow. Phys. Rev. Lett. 96 (3), 036001.
Kaoui, B., Tahiri, N., Biben, T., Ez-Zahraouy, H., Benyoussef, A., Biros, G. & Misbah, C. 2011 Complexity of vesicle microcirculation. Phys. Rev. E 84 (4), 041906.
Knoll, D. A. & Keys, D. E. 2004 Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193 (2), 357397.
Kreyszig, E. 1959 Differential Geometry. Dover.
Liron, N. & Mochon, S. 1976 Stokes flow for a Stokeslet between two parallel flat plates. J. Engng Maths 10, 287303.
Liron, N. & Shahar, R. 1978 Stokes flow due to a Stokeslet in a pipe. J. Fluid Mech. 86, 727744.
Loewenberg, M. & Hinch, E. J. 1996 Numerical simulation of a concentrated emulsion in shear flow. J. Fluid Mech. 321, 395419.
Loop, C. T.1987 smooth subdivision surfaces based on triangles. PhD thesis, University of Utah.
Misbah, C. 2006 Vacillating breathing and tumbling of vesicles under shear flow. Phys. Rev. Lett. 96 (2), 028104.
Morrison, D. D., Riley, J. D. & Zancanaro, J. F. 1962 Multiple shooting method for two-point boundary value problems. Commun. ACM 5 (12), 613614.
Narsimhan, V., Spann, A. P. & Shaqfeh, E. S. G. 2014 The mechanism of shape instability for a vesicle in extensional flow. J. Fluid Mech. 750, 144190.
Narsimhan, V., Spann, A. P. & Shaqfeh, E. S. G. 2015 Pearling, wrinkling, and buckling of vesicles in elongational flows. J. Fluid Mech. 777, 126.
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.
Ratulowski, J. & Chang, H. C. 1989 Transport of gas bubbles in capillaries. Phys. Fluids A 1 (1), 16421655.
Saintillan, D., Darve, E. & Shaqfeh, E. S. G. 2005 A smooth particle-mesh Ewald algorithm for Stokes suspension simulations: the sedimentation of fibers. Phys. Fluids 17 (3), 3301.
Secomb, T. W. 1988 Interaction between bending and tension forces in bilayer membranes. Biophys. J. 54 (4), 743746.
Secomb, T. W., Skalak, R., Oozkaya, N. & Gross, J. F. 1986 Flow of axisymmetric red blood cells in narrow capillaries. J. Fluid Mech. 163, 405423.
Seifert, U., Berndl, K. & Lipowsky, R. 1991 Shape transformations of vesicles: phase diagram for spontaneous-curvature and bilayer-coupling models. Phys. Rev. A 44 (2), 11821202.
Sonshine, R. M. & Brenner, H. 1966 The stokes translation of two or more particles along the axis of an infinitely long circular cylinder. Appl. Sci. Res. 16 (1), 425454.
Spann, A. P., Zhao, H. & Shaqfeh, E. S. G. 2014 Loop subdivision surface boundary integral method simulations of vesicles at low reduced volume ratio in shear and extensional flow. Phys. Fluids 26 (3), 031902.
Stoer, J. & Bulirsch, R. 2002 Introduction to Numerical Analysis, 3rd edn, vol. 12. Springer.
Thiebaud, M. & Misbah, C. 2013 Rheology of a vesicle suspension with finite concentration: a numerical study. Phys. Rev. E 88 (6), 062707.
Tözeren, H. 1984 Boundary integral equation method for some Stokes problems. Intl J. Numer. Meth. Fluids 4 (2), 159170.
Trozzo, R., Boedec, G., Leonetti, M. & Jaeger, M. 2015 Axisymmetric boundary element method for vesicles in a capillary. J. Comput. Phys. 289, 6282.
Vitkova, V., Mader, M. & Podgorski, T. 2004 Deformation of vesicles flowing through capillaries. Europhys. Lett. 68 (3), 398404.
Vitkova, V., Mader, M. A., Polack, B., Misbah, C. & Podgorski, T. 2008 Micro-macro link in rheology of erythrocyte and vesicle suspensions. Biophys. J. 95 (6), L33L35.
Vlahovska, P. M. & Gracia, R. S. 2007 Dynamics of a viscous vesicle in linear flows. Phys. Rev. E 75 (1), 016313.
Wakiya, S. 1957 Viscous flows past a spheroid. J. Phys. Soc. Japan 12 (10), 11301141.
Wang, H. & Skalak, R. 1969 Viscous flow in a cylindrical tube containing a line of spherical particles. J. Fluid Mech. 38, 7596.
Youngren, G. K. & Acrivos, A. 1975 Stokes flow past a particle of arbitrary shape: a numerical method of solution. J. Fluid Mech. 69 (2), 377403.
Zhao, H., Isfahani, A. H. G., Olson, L. N. & Freund, J. B. 2010 A spectral boundary integral method for flowing blood cells. J. Comput. Phys. 229 (1), 37263744.
Zhao, H. & Shaqfeh, E. S. G. 2011 The dynamics of a vesicle in simple shear flow. J. Fluid Mech. 674, 578604.
Zhao, H. & Shaqfeh, E. S. G. 2013a The dynamics of a non-dilute vesicle suspension in a simple shear flow. J. Fluid Mech. 725, 709731.
Zhao, H. & Shaqfeh, E. S. G. 2013b The shape stability of a lipid vesicle in a uniaxial extensional flow. J. Fluid Mech. 719, 345361.
Zhao, H., Shaqfeh, E. S. G. & Narsimhan, V. 2012 Shear-induced particle migration and margination in a cellular suspension. Phys. Fluids 24 (1), 011902.
Zhao, H., Spann, A. P. & Shaqfeh, E. S. G. 2011 The dynamics of a vesicle in a wall-bound shear flow. Phys. Fluids 23 (12), 121901.
Zhong-can, O.-Y. & Helfrich, W. 1989 Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A 39 (10), 52805288.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Stokes flow of vesicles in a circular tube

  • Joseph M. Barakat (a1) and Eric S. G. Shaqfeh (a1) (a2) (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed