Skip to main content Accessibility help
×
Home

Spatio–temporal analysis of hydrodynamic forces on the particle bed in an oscillatory flow environment

  • Chaitanya D. Ghodke (a1) and Sourabh V. Apte (a1)

Abstract

A numerical investigation of unsteady hydrodynamic forces on the particle bed in an oscillatory flow environment is performed by means of direct numerical simulations. Statistical descriptions of drag and lift forces for two particle sizes of diameter 372 and 125 in wall units in a very rough turbulent flow regime are reported. Characterization of unsteady forces in terms of spatial distribution, temporal autocorrelation, force spectrum as well as cross-correlations with measurable flow variables is carried out. Based on the concept of impulse, intermittency in the drag and lift forces is also investigated. Temporal correlations show drag and lift to be positively correlated with a time delay that is approximately equal to the Taylor micro-scale related to the drag/lift fluctuations. The force spectra for drag and lift reveal roughly two scaling regions, $-11/3$ and $-7/3$ ; the former typically represents turbulence–mean-shear interactions, whereas the latter indicates dominance of turbulence–turbulence interactions. Particle forces are strongly correlated with streamwise velocity and pressure fluctuations in the near-bed region for both flow cases. In comparison to the large-diameter particle case, the spatial extent of these correlations is 2–3 times larger in homogeneous directions for the small sized particle, a feature that is reminiscent of longer near-bed structures. For both large- and small-particle cases, it is shown that the distributions of drag (lift) fluctuations, in particular, peakedness and long tails, match remarkably well with fourth-order Gram–Charlier distributions of velocity (pressure) fluctuations. Furthermore, it is demonstrated that the intermittency is larger in the case of the lift force compared to that for the drag in both flow cases. Distributions of impulse events are heavily and positively skewed and are well described by a generalized extreme value distribution.

Copyright

References

Hide All
van der A, D., O’Donoghue, T., Davies, A. G. & Ribberink, J. S. 2011 Experimental study of the turbulent boundary layer in acceleration-skewed oscillatory flow. J. Fluid Mech. 684, 251283.
Amir, M., Nikora, V. I. & Stewart, M. T. 2014 Pressure forces on sediment particles in turbulent open-channel flow: a laboratory study. J. Fluid Mech. 757, 458497.
Apte, S. V. & Finn, J. R. 2013 A variable-density fictitious domain method for particulate flows with broad range of particle–fluid density ratios. J. Comput. Phys. 243, 109129.
Apte, S. V., Mahesh, K. & Moin, P. 2009a Large-eddy simulation of evaporating spray in a coaxial combustor. Proc. Combust. Inst. 32, 22472256.
Apte, S. V., Mahesh, K., Moin, P. & Gorokhovski, M. 2009b Stochastic modeling of atomizing spray in a complex swirl injector using large-eddy simulation. Proc. Combust. Inst. 32, 22572266.
Apte, S. V., Mahesh, K., Moin, P. & Oefelein, J. C. 2003 Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor. Intl J. Multiphase Flow 29 (8), 13111331.
Apte, S. V., Martin, M. & Patankar, N. A. 2008 A numerical method for fully resolved simulation (FRS) of rigid particle–flow interactions in complex flows. J. Comput. Phys. 228 (8), 27122738.
Apte, S. V., Martin, M. & Patankar, N. A. 2009c A numerical method for fully resolved simulation (FRS) of rigid particle–flow interactions in complex flows. J. Comput. Phys. 228 (8), 27122738.
Bagnold, R. A. 1966 An approach to the sediment transport problem from general physics. In US Geological Survey Professional Paper, vol. 422, pp. 137. https://pubs.er.usgs.gov/publication/pp422I.
Celik, A., Diplas, P. & Dancey, C. 2013 Instantaneous turbulent forces and impulse on a rough bed: implications for initiation of bed material movement. Water Resour. Res. 49, 22132227.
Celik, A., Diplas, P. & Dancey, C. 2014 Instantaneous pressure measurements on a spherical grain under threshold conditions. J. Fluid Mech. 741, 6097.
Celik, A., Diplas, P., Dancey, C. & Valyrakis, M. 2010 Impulse and particle dislodgement under turbulent flow conditions. Phys. Fluids 22, 046601.
Chan-Braun, C.2012 Turbulent open channel flow, sediment erosion and sediment transport. PhD thesis, Karlsruhe Institute of Technology, Germany.
Chan-Braun, C., Garcia-Villalba, M. & Uhlmann, M. 2011 Force and torque acting on particles in transitionally rough open-channel flow. J. Fluid Mech. 684 (441), 441474.
Chan-Braun, C., Garcia-Villalba, M. & Uhlmann, M. 2013 Spatial and temporal scales of force and torque acting on wall-mounted spherical particles in open channel flow. Phys. Fluids 25 (7), 075103.
Chen, D., Chen, C., Tang, F.-E., Stansby, P. & Li, M. 2007 Boundary layer structure of oscillatory open-channel shallow flows over smooth and rough beds. Exp. Fluids 42 (5), 719736.
Cheng, N. & Chiew, Y. 1998 Pick-up probability for sediment entrainment. J. Hydraul. Engng ASCE 124, 232235.
Cheng, N. & Law, A. W.-K. 2003 Fluctuations of turbulent bed shear stress. J. Engng Mech. ASCE 129, 126130.
Detert, M., Weitbrecht, V. & Jirka, G. H. 2010 Laboratory measurements on turbulent pressure fluctuations in and above gravel beds. J. Hydraul. Engng ASCE 136, 779789.
Ding, L. & Zhang, Q.-H. 2010 Lattice Boltzmann simulation to characterize roughness effects of oscillatory boundary layer flow over a rough bed. In Proc. 32nd Conference on Coastal Eng., pp. 111.
Diplas, P., Dancey, C. L., Celik, A. O., Valyrakis, M., Greer, K. & Akar, T. 2008 The role of impulse on the initiation of particle movement under turbulent flow conditions. Science 322 (5902), 717720.
Dixen, M., Hatipoglu, F., Sumer, B. M. & Fredsøe, J. 2008 Wave boundary layer over a stone-covered bed. Coast. Engng 55, 120.
Dwivedi, A.2010 Mechanics of sediment entrainment. PhD thesis, The University of Auckland.
Dwivedi, A., Melville, B. & Shamseldin, A. Y. 2010 Hydrodynamic forces generated on spherical sediment particle during entrainment. J. Hydraul. Engng ASCE 136, 756769.
Einstein, H. 1950 The Bed-Load Function for Sediment Transportation in Open Channel Flows. U.S. Department of Agriculture.
Flores, N. & Sleath, J. 1998 Mobile layer in oscillatory sheet flow. J. Geophys. Res. 103.
Fornarelli, F. & Vittori, G. 2009 Oscillatory boundary layer close to a rough wall. Eur. J. Mech. (B/Fluids) 28, 283295.
Fredsøe, J. & Deigaard, R. 1992 Mechanics of Coastal Sediment Transport. World Scientific.
George, W. K., Beuther, P. D. & Arndt, R. E. 1984 Pressure spectra in turbulent free shear flows. J. Fluid Mech. 148, 148191.
Ghodke, C. D.2016 DNS study of particle-bed–turbulence interactions in oscillatory flows. PhD thesis, Oregon State University, USA.
Ghodke, C. D. & Apte, S. V.2014 DNS of oscillatory boundary layer over a closely packed layer of sediment particles. In Proc. ASME Fluids Engineering Summer Meeting, Chicago, IL, USA. Paper number: FEDSM2014-21719.
Ghodke, C. D. & Apte, S. V.2016a A numerical investigation of particle-bed–turbulence interactions in oscillatory flows. In Proc. ICMF 9th International Conference on Multiphase Flow, Firenze, Italy.
Ghodke, C. D. & Apte, S. V. 2016b DNS study of particle-bed–turbulence interactions in an oscillatory wall-bounded flow. J. Fluid Mech. 792, 232251.
Ghodke, C. D. & Apte, S. V.2016c Particle-resolved DNS to study spatio-temporal correlations of hydrodynamic forces on particle-bed in an oscillatory flow environment. In Proc. ASME Fluids Engineering Summer Meeting, Washington DC, USA. Paper number: FEDSM2016-7761.
Ghodke, C. D. & Apte, S. V.2017 A numerical investigation to study roughness effects in oscillatory flows. In Proc. ASME Fluids Engineering Summer Meeting, Hawaii, USA. Paper number: FEDSM2017-69066.
Ghodke, C. D. & Apte, S. V. 2018 Roughness effects on second-order turbulence statistics in oscillatory flows. Comput. Fluids 162, 160170.
Ghodke, C. D., Apte, S. V. & Urzay, J.2014a Direct numerical simulations of oscillatory wall-bounded flow over a closely-packed fixed bed of spherical particles. In Proc. Center for Turbulence Research Summer Prog., pp. 47–55.
Ghodke, C. D., Skitka, J. & Apte, S. V. 2014b Characterization of oscillatory boundary layer over a closely packed bed of sediment particles. J. Comput. Multiphase Flows 6 (4), 187197.
Glowinski, R., Pan, T. W., Hesla, T. I., Joseph, D. D. & Periaux, J. 2001 A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies – application to particulate flow. J. Comput. Phys. 169 (2), 363426.
Hofland, B.2005 Rock and roll, turbulence-induced damage to granular bed protections. PhD thesis, Delft University of Technology, Netherlands.
Hofland, B. & Battjes, J. 2006 Probability density function of instantaneous drag forces and shear stresses on a bed. J. Hydraul. Engng ASCE 132, 11691175.
Hofland, B., Battjes, J. & Booij, R. 2005 Measurement of fluctuating pressures on coarse bed material. J. Hydraul. Engng ASCE 131, 770781.
Ikeda, T. & Durbin, P. A. 2007 Direct simulations of a rough-wall channel flow. J. Fluid Mech. 571, 235263.
Jensen, B. L., Sumer, B. M. & Fredsøe, J. 1989 Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech. 206, 265297.
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
Jonsson, I. G. & Carlsen, N. A. 1976 Experimental and theoretical investigations in an oscillatory turbulent boundary layer. J. Hydraul Res. 14, 4560.
Keiller, D. C. & Sleath, J. F. A. 1976 Velocity measurements close to a rough plate oscillating in its own plane. J. Fluid Mech. 73 (04), 673691.
Kemp, P. H. & Simons, R. R. 1982 The interaction of waves with a turbulent current: waves propagating against the current. J. Fluid Mech. 130, 7389.
Kempe, T., Vowinckel, B. & Fröhlich, J. 2014 On the relevance of collision modeling for interface-resolving simulations of sediment transport in open channel flow. Intl J. Multiphase Flow 58, 214235.
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.
Krogstad, P.-A., Andersson, H. I., Bakken, O. M. & Ashrafin, A. 2005 An experimental and numerical study of channel flow with rough walls. J. Fluid Mech. 530, 327352.
Krogstad, P.-A. & Antonia, R. A. 1994 Stucture of turbulent boundary layers on smooth and rough walls. J. Fluid Mech. 277, 121.
Krogstad, P.-A., Antonia, R. A. & Browne, L. W. B. 1992 Comparison between rough and smooth-wall turbulent boundary layers. J. Fluid Mech. 245, 599617.
Krstic, R. V. & Fernando, H. J. S. 2001 The nature of rough-wall oscillatory boundary layers. J. Hydraul Res. 30, 655666.
Mahesh, K., Constantinescu, G., Apte, S., Iaccarino, G., Ham, F. & Moin, P. 2006 Large-eddy simulation of reacting turbulent flows in complex geometries. Trans. ASME J. Appl. Mech. 73, 374.
Mahesh, K., Constantinescu, G. & Moin, P. 2004 A numerical method for large-eddy simulation in complex geometries. J. Comput. Phys. 197 (1), 215240.
Mazzuoli, M. & Vittori, G. 2016 Transition to turbulence in an oscillatory flow over a rough wall. J. Fluid Mech. 792, 6797.
Mingmin, H. & Qiwei, H. 1982 Stochastic model of incipient sediment motion. J. Hydraul. Div. ASCE 108, 211224.
Moin, P. & Mahesh, K. 1998 Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30 (1), 539578.
Nelson, J. M., Schmeeckle, M. W., Shreve, R. L. & McLean, S. R.2000 Sediment entrainment and transport in complex flows. In Selected Papers of the Int. Assoc. Hydraulic Research Symp. on River, Coastal and Estuarine Morphodynamics, Genova, Italy.
Nino, Y., Lopez, F. & Garcia, M. 2003 Threshold for particle entrainment into suspension. Sedimentology 50 (2), 247263.
Papanicolaou, A., Diplas, P., Evaggelopoulos, N. & Fotopoulos, S. 2002 Stochastic incipient motion criterion for spheres under various bed packing conditions. J. Hydraul. Engng ASCE 128, 369380.
Roma, A. M., Peskin, C. S. & Berger, M. J. 1999 An adaptive version of the immersed boundary method. J. Comput. Phys. 153 (2), 509534.
Rosenthal, G. N. & Sleath, J. F. A. 1986 Measurements of lift in oscillatory flow. J. Fluid Mech. 164, 449467.
Schmeeckle, M. W., Nelson, J. M. & Shreve, R. L. 2007 Forces on stationary particles in near-bed turbulent flows. J. Geophy. Res. 112, F02003.
Sharma, N. & Patankar, N. A. 2005 A fast computation technique for the direct numerical simulation of rigid particulate flows. J. Comput. Phys. 205 (2), 439457.
Shields, A.1936 Application of Similarity Principles and Turbulence Research to Bed-Load Movement. California Institute of Technology; translated from German. https://authors.library.caltech.edu/25992/1/Sheilds.pdf.
Sleath, J. F. A. 1987 Turbulent oscillatory flows over rough beds. J. Fluid Mech. 182, 369409.
Sleath, J. 1995 Sediment transport by waves and currents. J. Geophys. Res. 100.
Sleath, J. 1999 Conditions for plug formation in oscillatory flow. Cont. Shelf Res. 13.
Valyrakis, M., Diplas, P., Dancey, C., Greer, K. & Celik, A. 2010 Role of instantaneous force magnitude and duration on particle entrainment. J. Geophys. Res. 115.
Van Rijn, L. C. 1984 Sediment pick-up functions. J. Hydraul. Engng ASCE 110 (10), 14941502.
Welch, P. D. 1967 The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15, 7073.
Wu, F.-C. & Chou, Y.-J. 2003 Rolling and lifting probabilities for sediment entrainment. J. Hydraul. Engng ASCE 129, 110119.
Wu, F.-C. & Kuo-Hsin, Y. 2004 Entrainment probabilities of mixed-size sediment incorporating near-bed coherent flow structures. J. Hydraul. Engng ASCE 130, 11871197.
Wu, F.-C. & Lin, Y.-C. 2002 Pickup probability of sediment under log-normal velocity distribution. J. Hydraul. Engng ASCE 128, 438442.
Yuan, J. & Piomelli, U. 2014 Roughness effects on the Reynolds stress budgets in near-wall turbulence. J. Fluid Mech. 760, R1.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Spatio–temporal analysis of hydrodynamic forces on the particle bed in an oscillatory flow environment

  • Chaitanya D. Ghodke (a1) and Sourabh V. Apte (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.