Skip to main content Accessibility help

Slipping motion of large neutrally buoyant particles in turbulence

  • Mamadou Cisse (a1), Holger Homann (a1) and Jérémie Bec (a1)


Direct numerical simulations are used to investigate the individual dynamics of large spherical particles suspended in a developed homogeneous turbulent flow. A definition of the direction of the particle motion relative to the surrounding flow is introduced and used to construct the mean fluid velocity profile around the particle. This leads to an estimate of the particle slipping velocity and its associated Reynolds number. The flow modifications due to the particle are then studied. The particle is responsible for a shadowing effect that occurs in the wake up to distances of the order of its diameter: the particle calms turbulent fluctuations and reduces the energy dissipation rate compared to its average value in the bulk. Dimensional arguments are presented to draw an analogy between particle effects on turbulence and wall flows. Evidence is obtained for the presence of a logarithmic sublayer at distances between the thickness of the viscous boundary layer and the particle diameter ${D}_{p} $ . Finally, asymptotic arguments are used to relate the viscous sublayer quantities to the particle size and the properties of the outer turbulence. It is shown in particular that the skin-friction Reynolds number behaves as $R{e}_{\tau } \propto {({D}_{p} / \eta )}^{4/ 3} $ .


Corresponding author

Email address for correspondence:


Hide All
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.
Bellani, G., Byron, M. L., Collignon, A. G., Meyer, C. R. & Variano, E. A. 2012 Shape effects on turbulent modulation by large nearly neutrally buoyant particles. J. Fluid Mech. 712, 4160.
Bellani, G. & Variano, E. A. 2012 Slip velocity of large neutrally buoyant particles in turbulent flows. New J. Phys. 14 (12), 125009.
Garcia-Villalba, M., Kidanemariam, A. G. & Uhlmann, M. 2012 DNS of vertical plane channel flow with finite-size particles: Voronoi analysis, acceleration statistics and particle-conditioned averaging. Intl J. Multiphase Flow 46, 5474.
Gatignol, R. 1983 The Faxén formulae for a rigid sphere in an unsteady non-uniform Stokes flow. J. Méc. Théor. Appl. 1, 143160.
Homann, H. & Bec, J. 2010 Finite-size effects in the dynamics of neutrally buoyant particles in turbulent flow. J. Fluid Mech. 651, 8191.
Homann, H., Bec, J. & Grauer, R. 2013 Effect of turbulent fluctuations on the drag and lift forces on a towed sphere and its boundary layer. J. Fluid Mech. 721, 155179.
Kajishima, T. 2004 Influence of particle rotation on the interaction between particle clusters and particle-induced turbulence. Intl J. Heat Fluid Flow 25, 721728.
Khalitov, D. A. & Longmire, E. K. 2002 Simultaneous two-phase PIV by two-parameter phase discrimination. Exp. Fluids 32, 252268.
Kidanemariam, A., Chan-Braun, C., Doychev, T. & Uhlmann, M. 2013 Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction. New J. Phys. 15, 025031.
Klein, S., Gibert, M., Bérut, A. & Bodenschatz, E. 2012 Simultaneous 3d measurement of the translation and rotation of finite size particles and the flow field in a fully developed turbulent water flow. Meas. Sci. Technol. 24, 024006.
Legendre, D., Merle, A. & Magnaudet, J. 2006 Wake of a spherical bubble or a solid sphere set fixed in a turbulent environment. Phys. Fluids 18, 048102.
Lucci, F., Ferrante, A. & Elghobashi, S. 2010 Modulation of isotropic turbulence by particles of Taylor length scale size. J. Fluid Mech. 650, 555.
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883889.
Naso, A. & Prosperetti, A. 2010 The interaction between a solid particle and a turbulent flow. New J. Phys. 12, 033040.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Qureshi, N., Bourgoin, M., Baudet, C., Cartellier, A. & Gagne, Y. 2007 Turbulent transport of material particles: an experimental study of finite size effects. Phys. Rev. Lett. 99, 184502.
Tanaka, T. & Eaton, J. 2010 Sub-Kolmogorov resolution particle image velocimetry measurements of particle–laden forced turbulence. J. Fluid Mech. 643, 177206.
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.
Volk, R., Calzavarini, E., Lévêque, E. & Pinton, J.-F. 2011 Dynamics of inertial particles in a turbulent von Kármán flow. J. Fluid Mech. 668, 223235.
Xu, H. & Bodenschatz, E. 2008 Motion of inertial particles with sizes larger than Kolmogorov scales in turbulent flows. Physica D 237, 20952100.
Zeng, L., Balachandar, S. & Najjar, F. M. 2010 Wake response of a stationary finite-sized particle in a turbulent channel flow. Intl J. Multiphase Flow 36, 406422.
Zimmermann, R., Gasteuil, Y., Bourgoin, M., Volk, R., Pumir, A. & Pinton, J.-F. 2011 Rotational intermittency and turbulence induced lift experienced by large particles in a turbulent flow. Phys. Rev. Lett. 106, 154501.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Slipping motion of large neutrally buoyant particles in turbulence

  • Mamadou Cisse (a1), Holger Homann (a1) and Jérémie Bec (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.