Skip to main content Accessibility help
×
Home

Self-similar mixing in stratified plane Couette flow for varying Prandtl number

  • Qi Zhou (a1), John R. Taylor (a1) and C. P. Caulfield (a1) (a2)

Abstract

We investigate fully developed turbulence in stratified plane Couette flows using direct numerical simulations similar to those reported by Deusebio et al. (J. Fluid Mech., vol. 781, 2015, pp. 298–329) expanding the range of Prandtl number $Pr$ examined by two orders of magnitude from 0.7 up to 70. Significant effects of $Pr$ on the heat and momentum fluxes across the channel gap and on the mean temperature and velocity profile are observed. These effects can be described through a mixing length model coupling Monin–Obukhov (M–O) similarity theory and van Driest damping functions. We then employ M–O theory to formulate similarity scalings for various flow diagnostics for the stratified turbulence in the gap interior. The midchannel gap gradient Richardson number $Ri_{g}$ is determined by the length scale ratio $h/L$ , where $h$ is the half-channel gap depth and $L$ is the Obukhov length scale. As $h/L$ approaches very large values, $Ri_{g}$ asymptotes to a maximum characteristic value of approximately 0.2. The buoyancy Reynolds number $Re_{b}\equiv \unicode[STIX]{x1D700}/(\unicode[STIX]{x1D708}N^{2})$ , where $\unicode[STIX]{x1D700}$ is the dissipation, $\unicode[STIX]{x1D708}$ is the kinematic viscosity and $N$ is the buoyancy frequency defined in terms of the local mean density gradient, scales linearly with the length scale ratio $L^{+}\equiv L/\unicode[STIX]{x1D6FF}_{\unicode[STIX]{x1D708}}$ , where $\unicode[STIX]{x1D6FF}_{\unicode[STIX]{x1D708}}$ is the near-wall viscous scale. The flux Richardson number $Ri_{f}\equiv -B/P$ , where $B$ is the buoyancy flux and $P$ is the shear production, is found to be proportional to $Ri_{g}$ . This then leads to a turbulent Prandtl number $Pr_{t}\equiv \unicode[STIX]{x1D708}_{t}/\unicode[STIX]{x1D705}_{t}$ of order unity, where $\unicode[STIX]{x1D708}_{t}$ and $\unicode[STIX]{x1D705}_{t}$ are the turbulent viscosity and diffusivity respectively, which is consistent with Reynolds analogy. The turbulent Froude number $Fr_{h}\equiv \unicode[STIX]{x1D700}/(NU^{\prime 2})$ , where $U^{\prime }$ is a turbulent horizontal velocity scale, is found to vary like $Ri_{g}^{-1/2}$ . All these scalings are consistent with our numerical data and appear to be independent of $Pr$ . The classical Osborn model based on turbulent kinetic energy balance in statistically stationary stratified sheared turbulence (Osborn, J. Phys. Oceanogr., vol. 10, 1980, pp. 83–89), together with M–O scalings, results in a parameterization of $\unicode[STIX]{x1D705}_{t}/\unicode[STIX]{x1D708}\sim \unicode[STIX]{x1D708}_{t}/\unicode[STIX]{x1D708}\sim Re_{b}Ri_{g}/(1-Ri_{g})$ . With this parameterization validated through direct numerical simulation data, we provide physical interpretations of these results in the context of M–O similarity theory. These results are also discussed and rationalized with respect to other parameterizations in the literature. This paper demonstrates the role of M–O similarity in setting the mixing efficiency of equilibrated constant-flux layers, and the effects of Prandtl number on mixing in wall-bounded stratified turbulent flows.

Copyright

Corresponding author

Email address for correspondence: q.zhou@damtp.cam.ac.uk

References

Hide All
Armenio, V. & Sarkar, S. 2002 An investigation of stably stratified turbulent channel flow using large-eddy simulation. J. Fluid Mech. 459, 142.
Barry, M. E., Ivey, G. N., Winters, K. B. & Imberger, J. 2001 Measurements of diapycnal diffusivities in stratified fluids. J. Fluid Mech. 442, 267291.
Batchelor, G. K. 1959 Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113133.
Bewley, T. R. 2010 Numerical Renaissance: Simulation, Optimization, and Control. Renaissance Press (available at http://numerical-renaissance.com).
Billant, P. & Chomaz, J.-M. 2001 Self-similarity of strongly stratified inviscid flows. Phys. Fluids 13, 16451651.
Bouffard, D. & Boegman, L. 2013 A diapycnal diffusivity model for stratified environmental flows. Dyn. Atmos. Oceans 61–62, 1434.
Bradshaw, P. & Huang, G. P. 1995 The law of the wall in turbulent flow. Proc. R. Soc. Lond. A 451, 165188.
Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J.-M. 2007 Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343368.
Britter, R. E.1974 An experiment on turbulence in a density stratified fluid. PhD thesis, Monash University, Victoria, Australia.
de Bruyn Kops, S. M. 2015 Classical scaling and intermittency in strongly stratified boussinesq turbulence. J. Fluid Mech. 775, 436463.
Caulfield, C. P. & Peltier, W. R. 2000 The anatomy of the mixing transition in homogeneous and stratified free shear layers. J. Fluid Mech. 413, 147.
Caulfield, C. P., Tang, W. & Plasting, S. C. 2004 Reynolds number dependence of an upper bound for the long-time-averaged buoyancy flux in plane stratified Couette flow. J. Fluid Mech. 498, 315332.
Chung, D. & Matheou, G. 2012 Direct numerical simulation of stationary homogeneous stratified sheared turbulence. J. Fluid Mech. 696, 434467.
Davidson, P. A. 2004 Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.
Davis, K. A. & Monismith, S. G. 2011 The modification of bottom boundary layer turbulence and mixing by internal waves shoaling on a barrier reef. J. Phys. Oceanogr. 41, 22232241.
Deusebio, E., Caulfield, C. P. & Taylor, J. R. 2015 The intermittency boundary in stratified plane Couette flow. J. Fluid Mech. 781, 298329; referred to in the text as DCT.
Diamessis, P. J., Spedding, G. R. & Domaradzki, J. A. 2011 Similarity scaling and vorticity structure in high-Reynolds-number stably stratified turbulent wakes. J. Fluid Mech. 671, 5295.
van Driest, E. R. 1956 On turbulent flow near a wall. J. Aero. Sci. 23, 10071011.
Eaves, T. S. & Caulfield, C. P. 2015 Disruption of SSP/VWI states by a stable stratification. J. Fluid Mech. 784, 548564.
Ellison, T. H. 1957 Turbulent transport of heat and momentum from an infinite rough plane. J. Fluid Mech. 2, 456466.
Fernando, H. J. S. 1991 Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech. 23, 455493.
Flores, O. & Riley, J. J. 2011 Analysis of turbulence collapse in stably stratified surface layers using direct numerical simulation. Boundary-Layer Meteorol. 139, 241259.
Foken, T. 2006 50 years of the Monin–Obukhov similarity theory. Boundary-Layer Meteorol. 119, 431447.
Galperin, B., Sukoriansky, S. & Anderson, P. S. 2007 On the critical Richardson number in stably stratified turbulence. Atmos. Sci. Lett. 8, 6569.
García-Villalba, M. & del Álamo, J. C. 2011 Turbulence modification by stable stratification in channel flow. Phys. Fluids 23, 045104.
García-Villalba, M., Azagra, E. & Uhlmann, M. 2011a A numerical study of turbulent stably-stratified plane Couette flow. In High Performance Computing in Science and Engineering ’10 (ed. Nagel, W. E. et al. ), pp. 251261. Springer.
García-Villalba, M., Azagra, E. & Uhlmann, M. 2011b Mixing efficiency in stably-stratified plane Couette flow. In Proceedings of the 7th International Symposium on Stratified Flows, Rome, Italy, August 2011. IAHR.
Holford, J. M. & Linden, P. F. 1999 Turbulent mixing in a stratified fluid. Dyn. Atmos. Oceans 30, 173198.
Howard, L. N. 1961 Note on a paper of John W. Miles. J. Fluid Mech. 10, 509512.
Ivey, G. N., Winters, K. B. & Koseff, J. R. 2008 Density stratification, turbulence, but how much mixing? Annu. Rev. Fluid Mech. 40, 169184.
Karimpour, F. & Venayagamoorthy, S. K. 2014 A simple turbulence model for stably stratified wall-bounded flows. J. Geophys. Res. 119, 870880.
Karimpour, F. & Venayagamoorthy, S. K. 2015 On turbulent mixing in stably stratified wall-bounded flows. Phys. Fluids 27, 046603.
Lilly, D. K. 1983 Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci. 40, 749761.
Linden, P. F. 1979 Mixing in stratified fluids. Geophys. Astrophys. Fluid Dyn. 13, 323.
Linden, P. F. 1980 Mixing across a density interface produced by grid turbulence. J. Fluid Mech. 100, 691703.
Lozovatsky, I. D. & Fernando, H. J. S. 2013 Mixing efficiency in natural flows. Phil. Trans. R. Soc. Lond. A 371, 20120213.
Maffioli, A., Brethouwer, G. & Lindborg, E. 2016 Mixing efficiency in stratified turbulence. J. Fluid Mech. 794, R3.
Maffioli, A. & Davidson, P. A. 2015 Dynamics of stratified turbulence decaying from a high buoyancy Reynolds number. J. Fluid Mech. 786, 210233.
Mahrt, L. 1999 Stratified atmospheric boundary layers. Boundary-Layer Meteorol. 90, 375396.
Mahrt, L. 2014 Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech. 46, 2345.
Mashayek, A., Caulfield, C. P. & Peltier, W. R. 2013 Time-dependent, non-monotonic mixing in stratified turbulent shear flows: implications for oceanographic estimates of buoyancy flux. J. Fluid Mech. 736, 570593.
Mater, B. D. & Venayagamoorthy, S. K. 2014 The quest for an unambiguous parameterization of mixing efficiency in stably stratified geophysical flows. Geophys. Res. Lett. 41, 46464653.
Miles, J. W. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10, 496508.
Oglethorpe, R. L. F., Caulfield, C. P. & Woods, A. W. 2013 Spontaneous layering in stratified turbulent Taylor–Couette flow. J. Fluid Mech. 721, R3.
Osborn, T. R. 1980 Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 10, 8389.
Park, Y. G., Whitehead, J. A. & Gnanadeskian, A. 1994 Turbulent mixing in stratified fluids: layer formation and energetics. J. Fluid Mech. 279, 279311.
Peltier, W. R. & Caulfield, C. P. 2003 Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech. 35, 135167.
Pham, H. T., Sarkar, S. & Winters, K. B. 2013 Large-eddy simulation of deep-cycle turbulence in an Equatorial Undercurrent model. J. Phys. Oceanogr. 43, 24902502.
Phillips, O. M. 1972 Turbulence in a strongly stratified fluid – is it unstable? Deep-Sea Res. 19, 7981.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
van Reeuwijk, M. & Hadžiabdić, M. 2015 Modelling high schmidt number turbulent mass transfer. Intl J. Heat Fluid Flow 51, 4249.
Riley, J. J. & de Bruyn Kops, S. M. 2003 Dynamics of turbulence strongly influenced by buoyancy. Phys. Fluids 15, 2047.
Riley, J. J. & Lindborg, E. 2012 Recent progress in stratified turbulence. In Ten Chapters in Turbulence (ed. Davidson, P. A., Kaneda, Y. & Sreenivasan, K. R.), pp. 269317. Cambridge University Press.
Rohr, J. & Van Atta, C. 1987 Mixing efficiency in stably stratified growing turbulence. J. Geophys. Res. 92, 54815488.
Salehipour, H., Caulfield, C. P. & Peltier, W. R. 2016 Turbulent mixing due to the Holmboe wave instability at high Reynolds number. J. Fluid Mech. 803, 591621.
Salehipour, H. & Peltier, W. R. 2015 Diapycnal diffusivity, turbulent Prandtl number and mixing efficiency in Boussinesq stratified turbulence. J. Fluid Mech. 775, 464500.
Salehipour, H., Peltier, W. R. & Mashayek, A. 2015 Turbulent diapycnal mixing in stratified shear flows: the influence of Prandtl number on mixing efficiency and transition at high Reynolds number. J. Fluid Mech. 773, 178223.
Schlichting, H. & Gersten, K. 2003 Boundary-Layer Theory. Springer.
Scotti, A. 2015 Biases in Thorpe-scale estimates of turbulence dissipation. Part II: energetics arguments and turbulence simulations. J. Geophys. Res. 45, 25222543.
Scotti, A. & White, B. 2016 The mixing efficiency of stratified turbulent boundary layers. J. Phys. Oceanogr. 46, 31813191.
Shih, L. H., Koseff, J. R., Ferziger, J. H. & Rehmann, C. R 2000 Scaling and parameterization of stratified homogeneous turbulent shear flow. J. Fluid Mech. 412, 120.
Shih, L. H., Koseff, J. R., Ivey, G. N. & Ferziger, J. H. 2005 Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. J. Fluid Mech. 525, 193214.
Smyth, W. D. & Moum, J. N. 2013 Marginal instability and deep cycle turbulence in the eastern equatorial Pacific Ocean. Geophys. Res. Lett. 40, 61816185.
Smyth, W. D., Moum, J. N. & Caldwell, D. R. 2001 The efficiency of mixing in turbulent patches: inferences from direct simulations and microstructure observations. J. Phys. Oceanogr. 31, 19691992.
Sukoriansky, S. & Galperin, B. 2013 An analytical theory of the buoyancy–Kolmogorov subrange transition in turbulent flows with stable stratification. Phil. Trans. R. Soc. Lond. A 371, 20120212.
Tang, W., Caulfield, C. P. & Kerswell, R. R. 2009 A prediction for the optimal stratification for turbulent mixing. J. Fluid Mech. 634, 487497.
Tastula, E.-M., Galperin, B., Sukoriansky, S., Luhar, A. & Anderson, P. 2015 The importance of surface layer parameterization in modeling of stable atmospheric boundary layers. Atmos. Sci. Lett. 16, 8388.
Taylor, J. R.2008 Numerical simulations of the stratified oceanic bottom boundary layer. PhD thesis, University of California, San Diego.
Taylor, J. R., Sarkar, S. & Armenio, V. 2005 Large eddy simulation of stably stratified open channel flow. Phys. Fluids 17, 116602.
Thorpe, S. A. & Liu, Z. 2009 Marginal instability? J. Phys. Oceanogr. 39, 23732381.
Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.
Venayagamoorthy, S. K. & Stretch, D. D. 2010 On the turbulent Prandtl number in homogeneous stably stratified turbulence. J. Fluid Mech. 644, 359369.
Walter, R. K., Squibb, M. E., Woodson, C. B., Koseff, J. R. & Monismith, S. G. 2014 Stratified turbulence in the nearshore coastal ocean: dynamics and evolution in the presence of internal bores. J. Phys. Oceanogr. 119, 87098730.
Wells, M., Cenedese, C. & Caulfield, C. P. 2010 The relationship between flux coefficient and entrainment ratio in density currents. J. Phys. Oceanogr. 40, 27132727.
Wilson, J. M. & Venayagamoorthy, S. K. 2015 A shear-based parameterization of turbulent mixing in the stable atmospheric boundary layer. J. Atmos. Sci. 72, 17131726.
Wyngaard, J. C. 2010 Turbulence in the Atmosphere. Cambridge University Press.
Zhou, Q.2015 Far-field evolution of turbulence-emitted internal waves and Reynolds number effects on a localized stratified turbulent flow. PhD thesis, Cornell University, Ithaca, New York.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed