Skip to main content Accessibility help

Robust features of a turbulent boundary layer subjected to high-intensity free-stream turbulence

  • R. Jason Hearst (a1) (a2), Eda Dogan (a3) (a2) and Bharathram Ganapathisubramani (a2)


The influence of the large scale organisation of free-stream turbulence on a turbulent boundary layer is investigated experimentally in a wind tunnel through hot-wire measurements. An active grid is used to generate high-intensity free-stream turbulence with turbulence intensities and local turbulent Reynolds numbers in the ranges $7.2\,\%\leqslant u_{\infty }^{\prime }/U_{\infty }\leqslant 13.0\,\%$ and $302\leqslant Re_{\unicode[STIX]{x1D706},\infty }\leqslant 760$ , respectively. In particular, several cases are produced with fixed $u_{\infty }^{\prime }/U_{\infty }$ and $Re_{\unicode[STIX]{x1D706},\infty }$ , but up to a 65 % change in the free-stream integral scale $L_{u,\infty }/\unicode[STIX]{x1D6FF}$ . It is shown that, while qualitatively the spectra at various wall-normal positions in the boundary layer look similar, there are quantifiable differences at the large wavelengths all the way to the wall. Nonetheless, profiles of the longitudinal statistics up to fourth order are well collapsed between cases at the same $u_{\infty }^{\prime }/U_{\infty }$ . It is argued that a larger separation of the integral scale would not yield a different result, nor would it be physically realisable. Comparing cases across the wide range of turbulence intensities and free-stream Reynolds numbers tested, it is demonstrated that the near-wall spectral peak is independent of the free-stream turbulence, and seemingly universal. The outer peak was also found to be described by a set of global scaling laws, and hence both the near-wall and outer spectral peaks can be predicted a priori with only knowledge of the free-stream spectrum, the boundary layer thickness ( $\unicode[STIX]{x1D6FF}$ ) and the friction velocity ( $U_{\unicode[STIX]{x1D70F}}$ ). Finally, a conceptual model is suggested that attributes the increase in $U_{\unicode[STIX]{x1D70F}}$ as $u_{\infty }^{\prime }/U_{\infty }$ increases to the build-up of energy at large wavelengths near the wall because that energy cannot be transferred to the universal near-wall spectral peak.


Corresponding author

Email address for correspondence:


Hide All
Baars, W. J., Hutchins, N. & Marusic, I. 2016 Spectral stochastic estimation of high-Reynolds-number wall-bounded turbulence for a refined inner–outer interaction model. Phys. Rev. F 1, 054406.
Brandt, L., Schlatter, P. & Henningson, D. S. 2004 Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167198.
Castro, I. P. 1984 Effects of free stream turbulence on low Reynolds number boundary layers. J. Fluids Engng 106 (3), 298306.
Corrsin, S. 1963 Turbulence: experimental methods. In Handbuch der Physik (ed. Flügge, S. & Truesdell, C. A.), pp. 524589. Springer.
Dogan, E., Hanson, R. & Ganapathisubramani, B. 2016 Interactions of large-scale free-stream turbulence with turbulent boundary layers. J. Fluid Mech. 802, 79107.
Dogan, E., Hearst, R. J. & Ganapathisubramani, B. 2017 Modelling high Reynolds number wall–turbulence interactions in laboratory experiments using large-scale free-stream turbulence. Phil. Trans. R. Soc. A 375 (2089), 20160091.
Ertunç, Ö., Özyilmaz, N., Lienhart, H., Durst, F. & Beronov, K. 2010 Homogeneity of turbulence generated by static-grid structures. J. Fluid Mech. 654, 473500.
Esteban, L. B., Dogan, E., Rodríguez-López, E. & Ganapathisubramani, B. 2017 Skin-friction measurements in a turbulent boundary layer under the influence of free-stream turbulence. Exp. Fluids 58 (9), 115.
Fransson, J. H. M., Matsubara, M. & Alfredsson, P. H. 2005 Transition induced by free-stream turbulence. J. Fluid Mech. 527, 125.
Hack, M. J. P. & Zaki, T. A. 2014 Streak instabilities in boundary layers beneath free-stream turbulence. J. Fluid Mech. 741, 280315.
Hancock, P. E. & Bradshaw, P. 1983 The effect of free-stream turbulence on turbulent boundary layers. J. Fluids Engng 105, 284289.
Hancock, P. E. & Bradshaw, P. 1989 Turbulence structure of a boundary layer beneath a turbulent free stream. J. Fluid Mech. 205, 4576.
Hearst, R. J., Buxton, O. R. H., Ganapathisubramani, B. & Lavoie, P. 2012 Experimental estimation of fluctuating velocity and scalar gradients in turbulence. Exp. Fluids 53 (4), 925942.
Hearst, R. J., Gomit, G. & Ganapathisubramani, B. 2016 Effect of turbulence on the wake of a wall-mounted cube. J. Fluid Mech. 804, 513530.
Hearst, R. J. & Lavoie, P. 2014 Decay of turbulence generated by a square-fractal-element grid. J. Fluid Mech. 741, 567584.
Hearst, R. J. & Lavoie, P. 2015 The effect of active grid initial conditions on high Reynolds number turbulence. Exp. Fluids 56 (10), 185.
Hearst, R. J. & Lavoie, P. 2016 Effects of multi-scale and regular grid geometries on decaying turbulence. J. Fluid Mech. 803, 528555.
Hutchins, N. & Marusic, I. 2007a Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.
Hutchins, N. & Marusic, I. 2007b Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. A 365, 657664.
Isaza, J. C., Salazar, R. & Warhaft, Z. 2014 On grid-generated turbulence in the near- and far field regions. J. Fluid Mech. 753, 402426.
Kang, H. S., Chester, S. & Meneveau, C. 2003 Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation. J. Fluid Mech. 480, 129160.
Klewicki, J. C. 2010 Reynolds number dependence, scaling, and dynamics of turbulent boundary layers. J. Fluids Engng 132, 094001.
Klewicki, J., Fife, P. & Wei, T. 2009 On the logarithmic mean profile. J. Fluid Mech. 638, 7393.
Klewicki, J., Fife, P., Wei, T. & McMurtry, P. 2007 A physical model of the turbulent boundary layer consonant with mean momentum balance structure. Phil. Trans. R. Soc. A 365, 823839.
Kreilos, T., Khapko, T., Schlatter, P., Duguet, Y., Henningson, D. S. & Eckhardt, B. 2016 Bypass transition and spot nucleation in boundary layers. Phys. Rev. F 1, 043602.
Larssen, J. V. & Devenport, W. J. 2011 On the generation of large-scale homogeneous turbulence. Exp. Fluids 50, 12071223.
Makita, H. 1991 Realization of a large-scale turbulence field in a small wind tunnel. Fluid Dyn. Res. 8, 5364.
Marusic, I., Baars, W. J. & Hutchins, N. 2017 Scaling of the streamwise turbulence intensity in the context of inner–outer interactions in wall turbulence. Phys. Rev. F 2, 100502.
Marusic, I., Monty, J. P., Hultmark, M. & Smits, A. J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.
Mydlarski, L. & Warhaft, Z. 1996 On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J. Fluid Mech. 320, 331368.
Nickels, T. B., Marusic, I., Hafez, S. & Chong, M. S. 2005 Evidence of the k 1 -1 law in a high-Reynolds-number turbulent boundary layer. Phys. Rev. Lett. 95, 074501.
Nickels, T. B., Marusic, I., Hafez, S., Hutchins, N. & Chong, M. S. 2007 Some predictions of the attached eddy model for a high Reynolds number boundary layer. Phil. Trans. R. Soc.  A 365, 807822.
Rodríguez-López, E., Bruce, P. J. K. & Buxton, O. R. H. 2015 A robust post-processing method to determine skin friction in turbulent boundary layers from the velocity profile. Exp. Fluids 56 (4), 68.
Schlatter, P. & Örlü, R. 2012 Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J. Fluid Mech. 710, 534.
Shahinfar, S. & Fransson, J. H. M. 2011 Effect of free-stream turbulence characteristics on boundary layer transition. J. Phys.: Conf. Ser. 318, 032019.
Sharp, N., Neuscamman, S. & Warhaft, Z. 2009 Effects of large-scale free stream turbulence on a turbulent boundary layer. Phys. Fluids 21, 095105.
Smits, A. J., Monty, J. P., Hultmark, M., Bailey, S. C. C., Hutchins, N. & Marusic, I. 2011 Spatial resolution correction for wall-bounded turbulence measurements. J. Fluid Mech. 676, 4153.
Thormann, A. & Meneveau, C. 2014 Decay of homogeneous, nearly isotropic turbulence behind active fractal grids. Phys. Fluids 26, 025112.
Valente, P. C. & Vassilicos, J. C. 2012 Universal dissipation scaling for nonequilibrium turbulence. Phys. Rev. Lett. 108, 214503.
Vassilicos, J. C. 2015 Dissipation in turbulent flows. Annu. Rev. Fluid Mech. 47, 95114.
Vincenti, P., Klewicki, J., Morrill-Winter, C., White, C. M. & Wosnik, M. 2013 Streamwise velocity statistics in turbulent boundary layers that spatially develop to high Reynolds number. Exp. Fluids 54, 1629.
Wu, X., Moin, P., Wallace, J. M., Skarda, J., Lozano-Durán, A. & Hickey, J.-P. 2017 Transitional–turbulent spots and turbulent–turbulent spots in boundary layers. Proc. Natl Acad. Sci. USA 114 (27), E5292E5299.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed