Skip to main content Accessibility help
×
Home

Pressure fluctuations and interfacial robustness in turbulent flows over superhydrophobic surfaces

  • J. Seo (a1), R. García-Mayoral (a1) (a2) and A. Mani (a1)

Abstract

Superhydrophobic surfaces can entrap gas pockets within their grooves when submerged in water. Such a mixed-phase boundary is shown to result in an effective slip velocity on the surface, and has promising potential for drag reduction and energy-saving in hydrodynamic applications. The target flow regime, in most such applications, is a turbulent flow. Previous analyses of this problem involved direct numerical simulations of turbulence with the superhydrophobic surface modelled as a flat boundary, but with a heterogeneous mix of slip and no-slip boundary conditions corresponding to the surface texture. Analysis of the kinematic data from these simulations has helped to establish the magnitude of drag reduction for various texture topologies. The present work is the first investigation that, alongside a kinematic investigation, addresses the robustness of superhydrophobic surfaces by studying the load fields obtain from data from direct numerical simulations (DNS). The key questions at the focus of this work are: does a superhydrophobic surface induce a different pressure field compared to a flat surface? If so, how does this difference scale with system parameters, and when does it become significant that it can deform the air–water interface and potentially rapture the entrapped gas pockets? To this end, we have performed DNS of turbulent channel flows subject to superhydrophobic surfaces over a wide range of texture sizes spanning values from $L^{+}=6$ to $L^{+}=155$ when expressed in terms of viscous units. The pressure statistics at the wall are decomposed into two contributions: one coherent, caused by the stagnation of slipping flow hitting solid posts, and one time-dependent, caused by overlying turbulence. The results show that the larger texture size intensifies the contribution of stagnation pressure, while the contribution from turbulence is essentially insensitive to $L^{+}$ . The two-dimensional stagnation pressure distribution at the wall and the pressure statistics in the wall-normal direction are found to be self-similar for different $L^{+}$ . The scaling of the induced pressure and the consequent deformations of the air–water interface are analysed. Based on our results, an upper bound on the texture wavelength is quantified that limits the range of robust operation of superhydrophobic surfaces when exposed to high-speed flows. Our results indicate that when the system parameters are expressed in terms of viscous units, the main parameters controlling the problem are $L^{+}$ and a Weber number based on inner dimensions; We obtain good collapse when all our results are expressed in wall units, independently of the Reynolds number.

Copyright

Corresponding author

Email address for correspondence: alimani@stanford.edu

References

Hide All
Aljallis, E., Sarshar, M. A., Datla, R., Sikka, V. & Jone, A. 2013 Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow. Phys. Fluids 25, 025103.
Belyaev, A. V. & Vinogradova, O. I. 2010 Effective slip in pressure-driven flow past super-hydrophobic stripes. J. Fluid Mech. 652, 489499.
Bidkar, R. A., Leblanc, L., Kulkarni, A. J., Bahadur, V., Ceccio, S. L. & Perlin, M. 2014 Skin-friction drag reduction in the turbulent regime using random-textured hydrophobic surfaces. Phys. Fluids 26, 085108.
Bose, S. T., Moin, P. & You, D. 2010 Grid-independent large-eddy simulation using explicit filtering. Phys. Fluids 22, 105103.
Busse, A. & Sandham, N. D. 2012 Influence of an anisotropic slip-length boundary condition on turbulent channel flow. Phys. Fluids 24, 055111.
Busse, A. & Sandham, N. D. 2013 Turbulent flow over superhydrophobic surfaces – roughness versus slip. In Proceedings of the 14th European Turbulence Conference, Lyon, France.
Cassie, A. B. D. & Baxter, S. 1944 Wettability of porous surfaces. Trans. Faraday Soc. 40, 546551.
Choi, C.-H. & Kim, C.-J. 2006 Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys. Rev. Lett. 96, 066001.
Choi, H., Moin, P. & Kim, J. 1993 Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255, 503539.
Choi, C.-H., Ulmanella, U., Kim, J., Ho, C.-M. & Kim, C.-J. 2006 Effective slip and friction reduction in nanograted superhydrophobic microchannels. Phys. Fluids 18, 087105.
Clauser, F. H. 1956 The turbulent boundary layer. Adv. Appl. Mech. 4, 151.
Daniello, R., Waterhouse, N. E. & Rothstein, J. P. 2009 Turbulent drag reduction using superhydrophobic surfaces. Phys. Fluids 21, 085103.
Freund, J. B. 2003 The atomic detail of a wetting/de-wetting flow. Phys. Fluids 15, L33L36.
Fukagata, K., Kasagi, N. & Koumoutsakos, P. 2006 A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces. Phys. Fluids 18, 051703.
García-Mayoral, R. & Jiménez, J. 2011a Drag reduction by riblets. Phil. Trans. R. Soc. Lond. A 369, 14121427.
García-Mayoral, R. & Jiménez, J. 2011b Hydrodynamic stability and breakdown of the viscous regime over riblets. J. Fluid Mech. 678, 317347.
García-Mayoral, R. & Jiménez, J. 2012 Scaling of turbulent structures in riblet channels up to $Re_{{\it\tau}}\approx 550$ . Phys. Fluids 24, 105101.
Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to $Re_{{\it\tau}}=2003$ . Phys. Fluids 18, 011702.
Hyväluoma, J. & Harting, J. D. R. 2008 Slip flow over structured surfaces with entrapped microbubbles. Phys. Rev. Lett. 100, 246001.
Jelly, T. O., Jung, S. Y. & Zaki, T. A. 2014 Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture. Phys. Fluids 26, 095102.
Jiménez, J. 1994 On the structure and control of near wall turbulence. Phys. Fluids 6 (2), 944953.
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.
Jiménez, J., Uhlman, M., Pinelli, A. & Kawahara, G. 2001 Turbulent shear flow over active and passive porous surfaces. J. Fluid Mech. 442, 89117.
Kamrin, K., Bazant, M. Z. & Stone, H. A. 2010 Effective slip boundary conditions for arbitrary periodic surfaces: the surface mobility tensor. J. Fluid Mech. 658, 409437.
Karatay, E., Haase, A. S., Visser, C. W., Sun, C., Lohse, D., Tsaia, P. A. & Lammertink, R. G. H. 2013 Control of slippage with tunable bubble mattresses. Proc. Natl Acad. Sci. USA 110 (21), 84228426.
Kim, J. & Moin, P. 1985 Application of a fractional step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308323.
Lauga, J. & Stone, H. 2003 Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 489, 5577.
Lee, C. & Kim, C.-J. 2009 Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls. Langmuir 25, 1281212818.
Lee, M. & Moser, R. D. 2015 Direct numerical simulation of turbulent channel flow up to $Re_{{\it\tau}}=5200$ . J. Fluid Mech. 774, 395415.
Lozano-Durán, A. & Jiménez, J. 2014 Effect of the computational domain on direct simulations of turbulent channels up to $Re_{{\it\tau}}=4200$ . Phys. Fluids 26, 011702.
Luchini, P. 1996 Reducing the turbulent skin friction. In Computational Methods in Applied Sciences ‘96 (ed. Desideri, J.-A. et al. ), pp. 466470. Wiley.
Luchini, P., Manzo, F. & Pozzi, A. 1991 Resistance of a grooved surface to parallel flow and cross-flow. J. Fluid Mech. 228, 87109.
Martell, M. B., Perot, J. B. & Rothstein, J. P. 2009 Direct numerical simulations of turbulent flows over superhydrophobic surfaces. J. Fluid Mech. 620, 3141.
Martell, M. B., Rothstein, J. P. & Perot, J. B. 2010 An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation. Phys. Fluids 22, 065102.
Min, T. & Kim, J. 2004 Effects of hydrophobic surface on skin-friction drag. Phys. Fluids 16, L55L58.
Min, T. & Kim, J. 2005 Effects of hydrophobic surface on stability and transition. Phys. Fluids 17, 108106.
Morinishi, Y., Lund, T. S., Vasilyev, O. V. & Moin, P. 1998 Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143, 90124.
Moser, R., Kim, J. & Mansour, N. 1998 Direct numerical simulation of turbulent channel flow up to $Re_{{\it\tau}}\approx 590$ . Phys. Fluids 11, 943945.
Ou, J., Perot, J. B. & Rothstein, J. P. 2004 Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys. Fluids 16, 46354643.
Park, H., Park, H. & Kim, J. 2013 A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow. Phys. Fluids 25, 110815.
Park, H., Sun, G. & Kim, C.-J. 2014 Superhydrophobic turbulent drag reduction as a function of surface grating parameters. J. Fluid Mech. 747, 722734.
Patankar, N. A. 2010 Consolidation of hydrophobic transition criteria by using an approximate energy minimization approach. Langmuir 26, 89418945.
Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54, 263288.
Rothstein, J. P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89109.
Samaha, M. A., Vahedi, T. H. & Gad-el-Hak, M. 2011 Modeling drag reduction and meniscus stability of superhydrophobic surface of random roughness. Phys. Fluids 23, 012001.
Seo, J., García-Mayoral, R. & Mani, A. 2013 Pressure fluctuations in turbulent flows over superhydrophobic surfaces. CTR Ann. Res. Briefs 2013, 217229.
Seo, J., García-Mayoral, R. & Mani, A. 2014 Turbulent flows over superhydrophobic surfaces: gas–liquid interface dynamics. In Proceedings of the 30th Symposium on Naval Hydrodynamics, Hobart, Australia.
Spalart, P. R. & McLean, J. D. 2011 Drag reduction: enticing turbulence, and then an industry. Phil. Trans. R. Soc. Lond. A 369, 15561569.
Srinivasan, S., Kleingartner, J. A., Gilbert, J. B., Cohen, R. E., Milne, A. J. B. & McKinley, G. H. 2015 Sustainable drag reduction in turbulent Taylor–Couette flows by depositing sprayable superhydrophobic surfaces. Phys. Rev. Lett. 114, 014501.
Steinberger, A., cile Cottin-Bizonne, C., Kleimann, P. & Charlaix, E. 2007 High friction on a bubble mattress. Nat. Mater. 6, 665668.
Teo, C. J. & Khoo, B. C. 2010 Flow past superhydrophobic surfaces containing longitudinal grooves: effects of interface curvature. Microfluid. Nanofluid. 9, 499511.
Thompson, P. A. & Troian, S. M. 1997 A general boundary condition for liquid flow at solid surfaces. Nature 389, 360362.
Türk, S., Daschiel, G., Stroh, A., Hasegawa, Y. & Frohnapfel, B. 2014 Turbulent flow over superhydrophobic surfaces with streamwise grooves. J. Fluid Mech. 747, 186217.
Van Dyke, Milton 1962 Higher approximations in boundary-layer theory. Part 1. General analysis. J. Fluid Mech. 14, 161177.
Watanabe, K., Yanuar & Udagawa, H. 1999 Drag reduction of newtonian fluid in a circular pipe with highly water-repellent wall. J. Fluid Mech. 381, 225238.
Wenzel, R. N. 1936 Resistance of solid surfaces to wetting by water. Ind. Engng Chem. 28, 988994.
Woolford, B., Prince, J., Maynes, D. & Webb, B. W. 2009 Particle image velocimetry characterization of turbulent channel flow with rib patterned superhydrophobic walls. Phys. Fluids 21, 085106.
Ybert, C., Barentin, C. & Cottin-Bizonne, C. 2007 Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries. Phys. Fluids 19, 123601.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
VIDEO
Movies

Seo et al. supplementary movie
Instantaneous wall-normal vorticity contours at y=0 for case P13.

 Video (18.0 MB)
18.0 MB
VIDEO
Movies

Seo et al. supplementary movie
Instantaneous wall-normal vorticity contours at y=0 for case P13.

 Video (6.9 MB)
6.9 MB
VIDEO
Movies

Seo et al. supplementary movie
Instantaneous wall-normal vorticity contours at y=0 for case P26.

 Video (16.7 MB)
16.7 MB
VIDEO
Movies

Seo et al. supplementary movie
Instantaneous wall-normal vorticity contours at y=0 for case P26.

 Video (8.1 MB)
8.1 MB
VIDEO
Movies

Seo et al. supplementary movie
Instantaneous wall-normal vorticity contours at y=0 for case P39.

 Video (16.3 MB)
16.3 MB
VIDEO
Movies

Seo et al. supplementary movie
Instantaneous wall-normal vorticity contours at y=0 for case P39.

 Video (7.8 MB)
7.8 MB
VIDEO
Movies

Seo et al. supplementary movie
Instantaneous pressure contours at y=0 for case P39.

 Video (12.4 MB)
12.4 MB
VIDEO
Movies

Seo et al. supplementary movie
Instantaneous pressure contours at y=0 for case P39.

 Video (8.1 MB)
8.1 MB
VIDEO
Movies

Seo et al. supplementary movie
Instantaneous pressure contours at y=0 for case P13.

 Video (16.1 MB)
16.1 MB
VIDEO
Movies

Seo et al. supplementary movie
Instantaneous pressure contours at y=0 for case P13.

 Video (8.4 MB)
8.4 MB
VIDEO
Movies

Seo et al. supplementary movie
Instantaneous pressure contours at y=0 for case P26.

 Video (16.5 MB)
16.5 MB
VIDEO
Movies

Seo et al. supplementary movie
Instantaneous pressure contours at y=0 for case P26.

 Video (7.9 MB)
7.9 MB

Pressure fluctuations and interfacial robustness in turbulent flows over superhydrophobic surfaces

  • J. Seo (a1), R. García-Mayoral (a1) (a2) and A. Mani (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed