Skip to main content Accessibility help
×
Home

Particle resuspension by a periodically forced impinging jet

  • Wen Wu (a1), Giovanni Soligo (a2) (a3), Cristian Marchioli (a2), Alfredo Soldati (a2) (a3) and Ugo Piomelli (a1)...

Abstract

When hovering over sandy terrain, the rotor of helicopters generates a downward jet that induces resuspension of dust and debris. We investigate the mechanisms that govern particle resuspension in such flow using an Eulerian–Lagrangian approach based on large-eddy simulation of turbulence. The wake generated by the helicopter is modelled as a vertical impinging jet, to which a sequence of periodically forced azimuthal vortices is superposed. The resulting flow field provides a unique range of flow scales with which the particles can interact. Downstream of the impingement region, layers of negative azimuthal vorticity (secondary vortices) form on the upwash side of the primary azimuthal (large-scale) vortices. These layers then detach from the surface together with the near-wall (small-scale) vortices populating the wall-jet region. We show how the dynamics of sediments is governed by its interaction with these structures. After initial lift off from the impingement surface, particles accumulate in regions where near-wall vortices roll around the impinging azimuthal vortex, forming rib-like structures that either propel particles away from the azimuthal vortex or entrap them in the shear layer between the azimuthal and secondary vortices. We demonstrate that these trapped particles are more likely to reach the outer flow region and generate a persistent cloud of airborne particles. We also show that, in a time-averaged sense, particle resuspension and deposition fluxes balance each other near the impingement surface.

Copyright

Corresponding author

Email address for correspondence: w.wu@queensu.ca

Footnotes

Hide All

Also at: Department of Fluid Mechanics, CISM, 33100 Udine, Italy.

Footnotes

References

Hide All
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.
Badr, S., Gauthier, G. & Gondret, P. 2014 Erosion threshold of a liquid immersed granular bed by an impinging plane liquid jet. Phys. Fluids 26 (2), 023302.
Balachandar, S. & Eaton, J. K. 2010 The turbulent wall jet measurements and modeling. Annu. Rev. Fluid Mech. 42, 111133.
Barth, T., Lecrivain, G. & Hampel, U. 2013 Particle deposition study in a horizontal turbulent duct flow using optical microscopy and particle size spectrometry. J. Aero. Sci. 60, 4754.
Bergougnoux, L., Bouchet, G., Lopez, D. & Guazzelli, É. 2014 The motion of small spherical particles falling in a cellular flow field at low Stokes number. Phys. Fluids 26, 115.
Bethke, N. & Dalziel, S. B. 2012 Resuspension onset and crater erosion by a vortex ring interacting with a particle layer. Phys. Fluids 24, 063301.
Cerbelli, S., Giusti, A. & Soldati, A. 2001 Ade approach to predicting dispersion of heavy particle in wall-bounded turbulence. Intl J. Multiphase Flow 27 (5), 18611879.
Colby, S.2005 Military spin. http://www.rotorandwing.com/2005/03/01/military-spin/, accessed: 2016-12-11.
Constantinescu, G. S. & Lele, S. K. 2002 A highly accurate technique for the treatment of flow equations at the polar axis in cylindrical coordinates using series expansions. J. Comput. Phys. 183 (1), 165186.
Crowe, C., Sommerfeld, M. & Tsuji, M. 1998 Multiphase Flows with Droplets and Particles. CRC Press.
Dairay, T., Fortune, V., Lamballais, E. & Brizzi, L. E. 2015 Direct numerical simulation of a turbulent jet impinging on a heated wall. J. Fluid Mech. 764, 362394.
Davidson, L. 2009 Large eddy simulations: how to evaluate resolution. Intl J. Heat Fluid Flow 30 (5), 10161025.
Dubrief, Y. & Delcayre, F. 2000 On coherent-vortex identification in turbulence. J. Turbul. 1, N11.
Eaton, J. K. & Fessler, J. R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20 (1), 169209.
Ferenc, J.-S. & Néda, Z. 2007 On the size-distribution of Poisson Voronoi cells. Phys. A 385, 518526.
Friess, H. & Yadigaroglu, G. 2002 Modelling of the resuspension of particle clusters from multilayer aerosol deposits with variable porosity. J. Aero. Sci. 33 (6), 883906.
Geiser, J. & Kiger, K. T. 2011 Vortex ring breakdown induced by topographic forcing. J. Phys. Conf. Ser. 318 (6), 110.
Germano, M., Piomelli, U., Moin, P. & William, C. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3 (7), 17601765.
Ghosh, S.2010 Configurational effect on dust cloud formation and brownout. Master’s thesis, Iowa State University, Ames, Iowa, United States.
Goldasteh, I., Ahmadi, G. & Ferro, A. R. 2013 Monte Carlo simulation of micron size spherical particle removal and resuspension from substrate under fluid flows. J. Aero. Sci. 66, 6271.
Henry, C. & Minier, J.-P. 2014 Progress in particle resuspension from rough surfaces by turbulent flows. Prog. Engng Combust. Sci. 45, 153.
Huang, J. M. & Hsiao, F. B. 1999 On the mode development in the developing region of a plane jet. Phys. Fluids 11, 18471857.
Hussain, A. K. M. F. & Reynolds, W. C. 1970 The mechanics of an organized wave in turbulent shear ow. J. Fluid Mech. 41, 248258.
Hwang, S. D. & Cho, H. H. 2003 Effects of acoustic excitation positions on heat transfer and flow in axisymmetric impinging jet: main jet excitation and shear layer excitation. Intl J. Heat Fluid Flow 24 (2), 199209.
Jasion, G. & Shrimpton, J. 2012 Prediction of brownout inception beneath a full-scale helicopter downwash. J. Am. Helicopter Soc. 57 (4), 113.
Johnson, B., Leishman, J. G. & Sydney, A. 2010 Investigation of sediment entrainment using dual-phase, high-speed particle image velocimetry. J. Am. Helicopter Soc. 55 (4), 113.
Kaftori, D., Hetsroni, G. & Banerjee, S. 1995a Particle behavior in the turbulent boundary layer. I. Motion, deposition, and entrainment. Phys. Fluids 7 (5), 10951106.
Kaftori, D., Hetsroni, G. & Banerjee, S. 1995b Particle behavior in the turbulent boundary layer. II. Velocity and distribution profiles. Phys. Fluids 7 (5), 11071121.
Keating, A., Piomelli, U., Bremhorst, K. & Nešić, S. 2004 Large-eddy simulation of heat transfer downstream of a backward-facing step. J. Turbul. 5, 20, 1–27.
Kiger, K. T., Corfman, K. & Mulinti, R. 2014 Effect of bed form evolution on sediment erosion and suspended load transport in an impinging jet. In Proceedings of the 17th International Symposium on Applications of Laser Techniques to Fluid Mechanics, pp. 19. Springer.
Klein, M., Sadiki, A. & Janicka, J. 2003 A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186 (2), 652665.
Kuerten, J. G. M. 2006 Subgrid modeling in particle-laden channel flow. Phys. Fluids 18, 025108.
Lee, T. E., Leishman, J. G. & Ramasamy, M. 2010 Fluid dynamics of interacting blade tip vortices with a ground plane. J. Am. Helicopter Soc. 55 (2), 022005.
Leishman, J. G. 2000 Principles of Helicopter Aerodynamics. Cambridge University Press.
Leonard, A. 1975 Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. A 18, 237248.
Liu, Y. H., Hirama, D. & Matsusaka, S. 2012 Particle removal process during application of impinging dry ice jet. J. Aero. Sci. 217, 607613.
Marchioli, C., Salvetti, M. V. & Soldati, A. 2008 Some issues concerning large-eddy simulation of inertial particle dispersion in turbulent bounded flows. Phys. Fluids 20 (4), 111.
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.
Matsusaka, S. 2015 High-resolution analysis of particle deposition and resuspension in turbulent channel flow. Aerosol Sci. Tech. 49 (3), 739746.
McLaughlin, J. B. 1991 Inertial migration of a small sphere in linear shear flows. J. Fluid Mech. 224, 261274.
Meneveau, C., Lund, T. S. & Cabot, W. H. 1996 A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353385.
Mihailovic, D. T. & Gualtieri, C.(Eds) 2010 Advances in Environmental Fluid Mechanics. World Scientific.
Miller, M. C., McCave, I. N. & Komar, P. D. 1977 Threshold of sediment motion under unidirectional currents. Sedimentology 24 (4), 507527.
Mladin, E. C. & Zumbrunnen, D. A. 2000 Alterations to coherent flow structures and heat transfer due to pulsations in an impinging air-jet. Intl J. Thermal Sci. 39 (2), 236248.
Mohseni, K. & Colonius, T. 2000 Numerical treatment of polar coordinate singularities. J. Comput. Phys. 157 (2), 787795.
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: a Voronoï analysis. Phys. Fluids 22 (10), 110.
Monchaux, R., Bourgoin, M. & Cartellier, A. 2012 Analyzing preferential concentration and clustering of inertial particles in turbulence. Intl J. Multiphase Flow 40, 118.
Mulinti, R. & Kiger, K. T. 2012 Particle suspension by a forced jet impinging on a mobile sediment bed. In Proceedings of the 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics, pp. 112. Springer.
Munro, R. J., Bethke, N. & Dalziel, S. B. 2009 Sediment resuspension and erosion by vortex rings. Phys. Fluids 21, 046601.
Niño, Y. & Garcia, M. H. 1996 Experiments on particle–turbulence interactions in the near-wall region of an open channel flow: implications for sediment transport. J. Fluid Mech. 326, 285319.
Olsson, M. & Fuchs, L. 1998 Large eddy simulations of a forced semi-confined circular impinging jet. Phys. Fluids 10, 476486.
Orlanski, I. 1976 A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 21 (3), 251269.
Özdemir, I. B. & Whitelaw, J. H. 1992 Impingement of an axisymmetric jet on unheated and heated flat plates. J. Fluid Mech. 240, 503532.
Pan, Y. & Banerjee, S. 1996 Numerical simulation of particle interactions with wall turbulence. Phys. Fluids 8 (10), 27332755.
Phillips, C. & Brown, R. E. 2009 Eulerian simulation of the fluid dynamics of helicopter brownout. J. Aircraft 46 (4), 14161429.
van Rijn, L. 1984 Sediment pick-up functions. J. Hydrol. Engng 110 (10), 14941502.
Saffman, P. G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385400.
Sato, H. 1960 The stability and transition of a two-dimensional jet. J. Fluid Mech. 7, 5380.
Sbrizzai, F., Verzicco, R. & Soldati, A. 2009 Turbulent flow and dispersion of inertial particles in a confined jet issued by a long cylindrical pipe. Flow Turbul. Combust. 82 (1), 123.
Schiller, L. & Naumann, Z. 1935 A drag coefficient correlation. Z. Ver. Deutsch. Ing. 77318.
Shields, A.1936 Application of similarity principles and turbulence research to bed-load movement. In Mitt. Preuss. Verschsanst., Berlin. Wasserbau Schiffbau (transl. W. P. Ott & J. C. Uchelen). California Institute of Technology, Pasadena, CA, Rep. No. 167.
Sutherland, B. R. & Dalziel, S. B. 2014 Bedload transport by a vertical jet impinging upon sediments. Phys. Fluids 26 (3), 035103.
Syal, M., Govindarajan, B. & Leishman, J. G. 2010 Mesoscale sediment tracking methodology to analyze brownout cloud developments. In Proceedings of the AHS 66th Annual Forum, pp. 16441673.
Thomas, S.2013 A GPU-accelerated, hybrid FVM-RANS methodology for modeling rotorcraft brownout. PhD thesis, University of Maryland, College Park, Maryland, United States.
Wu, W. & Piomelli, U. 2015 Large-eddy simulation of impinging jets with embedded azimuthal vortices. J. Turbul. 16 (1), 4466.
Wu, W. & Piomelli, U. 2016 Reynolds-averaged and wall-modelled large-eddy simulations of impinging jets with embedded azimuthal vortices. Eur. J. Mech. (B/Fluids) 55 (2), 348359.
Ziskind, G. 2006 Particle resuspension from surfaces: revisited and re-evaluated. Rev. Chem. Engng 22 (1–2), 1123.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Particle resuspension by a periodically forced impinging jet

  • Wen Wu (a1), Giovanni Soligo (a2) (a3), Cristian Marchioli (a2), Alfredo Soldati (a2) (a3) and Ugo Piomelli (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.