Skip to main content Accessibility help

On the equatorial Ekman layer

  • Florence Marcotte (a1), Emmanuel Dormy (a1) and Andrew Soward (a2)


The steady incompressible viscous flow in the wide gap between spheres rotating rapidly about a common axis at slightly different rates (small Rossby number) has a long and celebrated history. The problem is relevant to the dynamics of geophysical and planetary core flows, for which, in the case of electrically conducting fluids, the possible operation of a dynamo is of considerable interest. A comprehensive asymptotic study, in the small Ekman number limit $E\ll 1$ , was undertaken by Stewartson (J. Fluid Mech., vol. 26, 1966, pp. 131–144). The mainstream flow, exterior to the $E^{1/2}$ Ekman layers on the inner/outer boundaries and the shear layer on the inner sphere tangent cylinder $\mathscr{C}$ , is geostrophic. Stewartson identified a complicated nested layer structure on $\mathscr{C}$ , which comprises relatively thick quasigeostrophic $E^{2/7}$ - (inside $\mathscr{C}$ ) and $E^{1/4}$ - (outside $\mathscr{C}$ ) layers. They embed a thinner ageostrophic $E^{1/3}$ shear layer (on $\mathscr{C}$ ), which merges with the inner sphere Ekman layer to form the $E^{2/5}$ -equatorial Ekman layer of axial length $E^{1/5}$ . Under appropriate scaling, this $E^{2/5}$ -layer problem may be formulated, correct to leading order, independent of $E$ . Then the Ekman boundary layer and ageostrophic shear layer become features of the far-field (as identified by the large value of the scaled axial coordinate $z$ ) solution. We present a numerical solution of the previously unsolved equatorial Ekman layer problem using a non-local integral boundary condition at finite $z$ to account for the far-field behaviour. Adopting $z^{-1}$ as a small parameter we extend Stewartson’s similarity solution for the ageostrophic shear layer to higher orders. This far-field solution agrees well with that obtained from our numerical model.


Corresponding author

Email address for correspondence:


Hide All

Present address: Département de Mathématiques et Applications, CNRS UMR-8553, École Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France



Hide All
Abramowitz, M. & Stegun, I. A. 2010 NIST Handbook of Mathematical Functions (ed. Olver, F. W. J., Lozier, D. W., Boisvert, R. F. & Clark, C. W.), Cambridge University Press (available online
Aurnou, J., Andreadis, S., Zhu, L. & Olson, P. 2003 Experiments on convection in Earths core tangent cylinder. Earth Planet. Sci. Lett. 212, 119134.
Dormy, E. & Soward, A. M. 2007 Mathematical Aspects of Natural Dynamos (ed. Soward, A. M. & Ghil, M.), The Fluid Mechanics of Astrophysics and Geophysics, vol. 13, pp. 120136. Chapman & Hall.
Dormy, E., Cardin, P. & Jault, D. 1998 MHD flow in a slightly differentially rotating spherical shell, with conducting inner core, in a dipolar magnetic field. Earth Planet. Sci. Lett. 160, 1539.
Dormy, E., Jaultc, D. & Soward, A. M. 2002 A super-rotating shear layer in magnetohydrodynamic spherical Couette flow. J. Fluid Mech. 452, 263291.
Dormy, E., Soward, A. M., Jones, C. A., Jault, D. & Cardin, P. 2004 The onset of thermal convection in rotating spherical shells. J. Fluid Mech. 501, 4370.
Dowden, J. M. 1972 An equatorial boundary layer. J. Fluid Mech. 56, 193200.
Gill, A. E. 1971 The equatorial current in a homogeneous ocean. Deep-Sea Res. 18, 421431.
Glatzmaier, G. A. 2014 Introduction to Modeling Convection in Planets and Stars. Princeton University Press.
Gradshteyn, I. S. & Ryzhik, I. M. Table of Integrals, Series, and Products (ed. Jeffrey, A. & Zwillinger, D.), Elsevier.
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.
Hide, R. & Titman, C. W. 1967 Detached shear layers in a rotating fluid. J. Fluid Mech. 29, 3960.
Hollerbach, R. 2003 Instabilities of the Stewartson layer. Part 1. The dependence on the sign of Ro . J. Fluid Mech. 492, 289302.
Hollerbach, R. & Proctor, M. R. E. 1993 Non-axisymmetric shear layers in a rotating spherical shell. In Solar and Planetary Dynamos (ed. Proctor, M. R. E. & Gilbert, A. D.), pp. 145152. Cambridge University Press.
Hollerbach, R., Futterer, B., More, T. & Egbers, C. 2004 Instabilities of the Stewartson layer. Part 2: supercritical mode transitions. Theor. Comput. Fluid Dyn. 18, 197204.
Kerswell, R. R. 1995 On the internal shear layers spawned by the critical regions in oscillatory Ekman boundary layers. J. Fluid Mech. 298, 311325.
Koch, S., Harlander, U., Egbers, C. & Hollerbach, R. 2013 Inertial waves in a spherical shell induced by librations of the inner sphere: experimental and numerical results. Fluid Dyn. Res. 45, 035504.
Le Bars, M., Cébron, D. & Le Gal, P. 2015 Flows driven by libration, precession, and tides. Annu. Rev. Fluid Mech. 47, 163193.
Livermore, P. W. & Hollerbach, R. 2012 Successive elimination of shear layers by a hierarchy of constraints in inviscid spherical-shell flows. J. Math. Phys. 53, 073104.
Moore, D. W. & Saffman, P. G. 1969 The structure of free vertical shear layers in a rotating fluid and the motion produced by a slowly rising body. Phil. Trans. R. Soc. Lond. A 264 (1156), 597634.
Pedlosky, J. 1979 Geophysical Fluid Dynamics. Springer.
Philander, S. G. H. 1971 On the flow properties of a fluid between concentric spheres form. J. Fluid Mech. 47, 799809.
Proudman, I. 1956 The almost-rigid rotation of viscous fluid between concentric spheres. J. Fluid Mech. 1, 505516.
Roberts, P. H. 1967 Singularities of Hartmann layers. Proc. R. Soc. Lond. A 300, 94107.
Roberts, P. H. 2003 Magnetohydrodynamics and the Earth’s Core: Selected works of Paul Roberts (ed. Soward, A. M. & Ghil, M.), The Fluid Mechanics of Astrophysics and Geophysics, vol. 10. Taylor & Francis.
Roberts, P. H. & King, E. M. 2013 On the genesis of the Earth’s magnetism. Rep. Prog. Phys. 76, 096801.
Roberts, P. H. & Stewartson, K. 1963 On the stability of a Maclaurin spheroid with small viscocity. Astrophys. J. 137, 777790.
Rousset, R. 2007 Asymptotic behavior of geophysical fluids in highly rotating balls. Z. Angew. Math. Phys. 58, 5367.
Sakuraba, A. & Roberts, P. H. 2009 Generation of a strong magnetic field using uniform heat flux at the surface of the core. Nature Geosci. 2, 802805.
Stewartson, K. 1957 On almost rigid rotations. J. Fluid Mech. 3, 1726.
Stewartson, K. 1966 On almost rigid rotations. Part 2. J. Fluid Mech. 26, 131144.
Stewartson, K. & Rickard, J. R. A. 1970 Pathological oscillations of a rotating fluid. J. Fluid Mech. 35, 759773.
Taylor, J. B. 1963 The magnetohydrodynamics of a rotating fluid and the Earth’s dynamo problem. Proc. R. Soc. Lond. A 274, 27283.
van de Vooren, A. I. 1993 The connection between Ekman and Stewartson layers for a rotating disk. J. Engng Maths 27, 189207.
Vo, T., Montabone, L., Read, P. L. & Sheard, G. J. 2015 Non-axisymmetric flows in a differential-disk rotating system. J. Fluid Mech. 775, 349386.
Wei, X. & Hollerbach, R. 2008 Instabilities of Shercliffe and Stewartson layers in spherical Couette flow. Phy. Rev. E 78, 026309.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

On the equatorial Ekman layer

  • Florence Marcotte (a1), Emmanuel Dormy (a1) and Andrew Soward (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed