Skip to main content Accessibility help
×
Home

Non-normality and its consequences in active control of thermoacoustic instabilities

  • RAHUL KULKARNI (a1), KOUSHIK BALASUBRAMANIAN (a1) and R. I. SUJITH (a1)

Abstract

Non-normality can cause transient growth of perturbations in thermoacoustic systems with stable eigenvalues. This can cause low-amplitude perturbations to grow to amplitudes high enough to make nonlinear effects significant, and the system can become nonlinearly unstable, even though it is stable under classical linear stability. In this paper, we have demonstrated that this feature can lead to the failure of the traditional controllers that were designed on the basis of classical linear stability analysis. We have also shown in a simple model that it is possible to prevent ‘nonlinear driving’ by controlling transient growth, using linear controllers. The analysis is performed in the context of a horizontal Rijke tube.

Copyright

Corresponding author

Email address for correspondence: sujith@iitm.ac.in

References

Hide All
Annaswamy, A. M., Fleifil, M., Hathout, J. P. & Ghoniem, A. F. 1997 Impact of linear coupling on the design of active controllers for the thermoacoustic instability. Combust. Sci. Tech. 128, 131180.
Baggett, J. S., Driscoll, T. A. & Trefethen, L. N. 1995 A mostly linear model of transition to turbulence. Phys. Fluids 7 (4), 833838.
Balasubramanian, K. & Sujith, R. I. 2008 a Non-normality and nonlinearity in combustion–acoustic interactions in diffusion flames. J. Fluid Mech. 594, 2957.
Balasubramanian, K. & Sujith, R. I. 2008 b Thermoacoustic instabilities in Rijke tube: non-normality and nonlinearity. Phys. Fluids 20, 044103.
Banaszuk, A., Jacobson, C. A., Khibnik, A. & Mehta, P. 1999 a Linear and nonlinear analysis of controlled combustion process. Part I. Linear analysis. In Proceedings of the 1999 IEEE Conference on Control Applications, 22–27 August, pp. 199205. IEEE.
Banaszuk, A., Jacobson, C. A., Khibnik, A. & Mehta, P. 1999 b Linear and nonlinear analysis of controlled combustion process. Part II. Nonlinear analysis. In Proceedings of the 1999 IEEE Conference on Control Applications, 22–27 August, pp. 206212. IEEE.
Bernier, D., Ducruix, S., Lacas, F., Candel, S., Robart, N. & Poinsot, T. 2003 Transfer function measurements in a model combustor: application to adaptive instability control. Combust. Sci. Tech. 175, 9931015.
Bewley, T. R. & Hogberg, M. 2000 Specially localized convolution kernels for Feedback control of transitional flows. In Proceedings of 39th IEEE Conference on Decision and Control, Sydney, Australia (ed. Zhu, J. J.), pp. 32733283. IEEE.
Candel, S. 2002 Combustion dynamics and control: progress and challenges. Proc. Combust. Inst. 29, 128.
Cohen, J. M., Rey, N. M., Jacobson, C. A. & Torger, J. A. 1998 Active control of combustion instability in a liquid fueled low NOx combustor. ASME Paper 98-GT-267.
Collis, S. S., Joslin, R. D., Seifert, A. & Theofilies, V. 2004 Issues in active control: theory, control, simulation and experiment. Prog. Aeronaut. Sci. 40, 237–189.
Crocco, L. 1952 Aspects of combustion instability in liquid propellant rockets. Am. Rocket Soc. J. 22, 1126.
Dowling, A. P. & Morgans, A. S. 2005 Feedback control of combustion oscillations. Annu. Rev. Fluid Mech. 37, 151182.
Farrrell, B. & Ioannou, P. 1996 Turbulence suppression by active control. Phys. Fluids 8 (5), 12571268.
Fleifil, M., Hathout, J. P., Annaswamy, A. M. & Ghoniem, A. F. 1998 The origin of secondary peaks with active control of thermoacoustic instability. Combust. Sci. Technol. 133, 227265.
Handel, A. 2004 Limits of localized control in extended nonlinear systems. PhD Thesis, School of Physics, Georgia Institute of Technology, Atlanta, GA.
Heckl, M. A. 1990 Non-linear acoustic effects in the Rijke tube. Acustica 72, 6371.
Hibshman, J. R., Cohen, J. M. & Banaszuk, A. 1999 Active control of combustion instability in a liquid-fueled sector combustor. ASME Paper 99-GT-215.
Kaufmann, A., Nicoud, F. & Poinsot, T. 2002 Flow forcing techniques for numerical simulation of combustion instabilities. Combust. Flame 131, 371385.
Kopitz, J. & Polifke, W. 2005 CFD based analysis of thermoacoustic instabilities by determination of open-loop-gain. Paper No. 389. In 12th International Congress on Sound and Vibration, Lisbon, Portugal, the International Institute of Acoustics and Vibration.
Koshigoe, S., Komatsuzaki, T. & Yang, V. 1999 Active control of combustion instability with on-line system identification. J. Propul. Power 15 (3), 383389.
Lang, W., Poinsot, T. & Candel, S. 1987 Active control of combustion instability Combust. Flame 70, 281289.
Mcmanus, K. R., Poinsot, T. & Candel, S. 1993 A review of active control combustion instabilities. Prog. Energy Combust. Sci. 19, 129.
Murugappan, S., Gutmark, E. J., Acharya, S. & Krstic, M. 2000 Extremum-seeking adaptive controller for swirl-stabilized spray combustion. Proc. Combust. Inst. 28, 731737.
Nagaraja, S., Kedia, K. & Sujith, R. I. 2008 Characterizing energy growth during combustion instabilities: singularvalues or eigenvalues? Proc. Combust. Inst. 32 (2), 29332940.
Nicoud, F., Benoit, L., Sensiau, C. & Poinsot, T. 2007 Acoustic modes in combustor with complex impedances and multidimensional active flames. AIAA J. 45 (2), 426441.
Nicoud, F. & Wieczorek, K. 2009 About the zero Mach number assumption in the calculation of thermoacoustic instabilities. Intl J. Spray Combust. Dyn. 1 (1), 67111.
Rayleigh, Lord 1878 The explanation of certain acoustical phenomenon. Nature 18, 319321.
Richards, G. A. & Straub, D. L. 2005 Passive control of combustion instabilities in stationary gas turbines. In Combustion Instabilities in Gas turbine Engines: Operational Experience, Fundamental Mechanism and Modeling (ed. Lieuwen, T. C. & Yang, V.), chapter 17, pp. 533575. AIAA.
Schmid, P. J. & Henningson, D. D. 2001 Stability and Transition in Shear Flows. Springer.
Trefethen, L. N. & Embree, M. 2005 Spectra and Pseudospectra. Princeton University Press.
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261, 578584.
Whidborne, J. & Mckernan, J. 2007 On the minimization of maximum transient energy growth. IEEE Trans. Autom. Control 52 (9), 17621767.
Zhao, H. & Bau, H. H. 2006 Limitations of linear control of thermal convection in a porous medium. Phys. Fluids 18, 112.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed