Skip to main content Accessibility help
×
Home

Nonlinear analysis of shock–vortex interaction: Mach stem formation

  • Paul Clavin (a1)

Abstract

Shock–vortex interaction is analysed for strong gaseous shock waves and a ratio of specific heats close to unity. A nonlinear wave equation for the wrinkles of the shock front is obtained for weak vortices. The solution breaks down after a finite time and the slope of the front develops jump discontinuities, indicating the formation of Mach stems. Shock–turbulence interactions are also briefly discussed.

Copyright

Corresponding author

Email address for correspondence: clavin@irphe.univ-mrs.fr

References

Hide All
Agui, J. H., Briassulis, G. & Andreopoulos, Y. 2005 Studies of interactions of propagating shock wave with decaying grid turbulence: velocity and vorticity fields. J. Fluid Mech. 524, 143195.
Bates, J. W. 2012 On the theory of shock wave driven by a corrugated piston in a non-ideal fluid. J. Fluid Mech. 691, 146164.
Briscoe, M. G. & Kovitz, A. A. 1968 Experimental and theoretical study of the stability of plane shock waves reflected normally from perturbed flat walls. J. Fluid Mech. 31 (3), 529546.
Clavin, P. 2002a Instabilities and nonlinear patterns of overdriven detonations in gases. In Nonlinear PDE’s in Condensed Matter and Reactive Flows (ed. Berestycki, H. & Pomeau, Y.), pp. 4997. Kluwer Academic.
Clavin, P. 2002b Self-sustained mean streaming motion in diamond patterns of gaseous detonation. Intl J. Bifurcation Chaos 12 (11), 25352546.
Clavin, P & Denet, B. 2002 Diamond patterns in the cellular front of an overdriven detonation. Phys. Rev. Lett. 88 (4)044502–1–4.
Clavin, P. & Williams, F. A. 2012 Analytical studies of the dynamics of gaseous detonations. Phil. Trans. R. Soc A 370, 597624.
D’Yakov, S. P. 1954 The stabiliy of shockwaves: investigation of the problem of stability of shock waves in arbritary media. Zh. Eksp. Teor. Fiz. 27, 288.
Ellzey, J. L., Henneke, M. R., Picone, J. M. & Oran, E. S. 1995 The interaction of a shock with a vortex: Shock distortion and the production of acoustic waves. Phys. Fluids 7 (1), 172184.
Guichard, L., Vervich, L. & Domingo, P. 1995 Two-dimensional weak shock–vortex interaction in a mixing zone. AIAA J. 33 (10), 17971802.
Howe, M. S. 2003 Theory of Vortex Sound. Cambridge University Press.
Inoue, O. 2000 Propagation of sound generated by weak shock–vortex interaction. Phys. Fluids 12 (5), 12581261.
Inoue, O. & Hattory, Y. 1999 Sound generation by shock–vortex interactions. J. Fluid. Mech. 380, 81116.
Kontorovich, V. M. 1957 Concerning the stability of shock waves. Zh. Eksp. Teor. Fiz. 33, 1525.
Lapworth, K. C. 1959 An experimental investigation of the stability of planar shock waves. J. Fluid Mech. 6, 469480.
Larsson, J & Lele, S. K. 2009 Direct numerical simulation of canonical shock/turbulence interaction. Phys. Fluids 21, 126101–1–12.
Lele, S. K. & Larsson, J. 2009 Shock–turbulence interaction: what we know and what we can learn from peta-scale simulations. J. Phys.: Conf. Ser. 180, 012032.
Huete Ruiz de Lira, C. 2012 Interaction of planar shock waves with non uniforme flows. PhD thesis, Universidad Nacional De Education A Distancia (UNED).
Majda, A. & Rosales, R. 1983 A theory for spontaneous mach stem formation in reacting fronts, I The basic perturbation analysis. SIAM J. Appl. Maths 43 (6), 13101334.
Ribner, S. S. 1985 Cylindrical sound wave generated by shock–vortex interaction. AIAA J. 23 (11), 17081715.
Shchelkin, K. I. & Troshin, Ya. K. 1965 Gasdynamics of combustion. Mono Book Corp.
Strehlow, R. A. 1979 Fundamentals of Combustion. Kreiger.
Van-Moorhem, K. & George, A. R. 1975 On the stability of plane shock. J. Fluid Mech. 68 (1), 97108.
Whitham, G. B. 1957 A new approach to problem of shock dynamics. Part I two-dimensional problem. J. Fluid Mech. 2 (02), 145171.
Wouchuk, J. G. & Huete Ruiz de Lira, C. 2009 Analytical linear theory of planar shock wave with isotropic turbulent flow field. Phys. Rev. E 79, 06315–1–35.
Zhang, S., Zhang, Y-T. & Shu, C-W. 2005 Multistage interaction of a shock wave and a strong vortex. Phys. Fluids 17 (116101), 113.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Nonlinear analysis of shock–vortex interaction: Mach stem formation

  • Paul Clavin (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.