Batchelor, G. K.
1972
Sedimentation in a dilute dispersion of spheres. J. Fluid Mech.
52, 245–268.

Batchelor, G. K. & Green, J. T.
1972
The determination of the bulk stress in a suspension of spherical particles to order
$c^2$
. J. Fluid Mech.
56, 401–427.
Binder, C., Feichtinger, C., Schmid, H.-J., Thürey, N., Peukert, W. & Rüde, U.
2006
Simulation of the hydrodynamic drag of aggregated particles. J. Colloid Interface Sci.
301, 155–167.

Binder, C., Hartig, M. A. J. & Peukert, W.
2009
Structural dependent drag force and orientation prediction for small fractal aggregates. J. Colloid Interface Sci.
331, 243–250.

Cichocki, B., Felderhof, B. U. & Schmitz, R.
1988
Hydrodynamic interactions between two spherical particles. Physico-Chem. Hydrodyn.
10, 383–403.

Chopard, B., Nguyen, H. & Stoll, S.
2006
A lattice Boltzmann study of the hydrodynamic properties of 3D fractal aggregates. Maths Comput. Simul.
72, 103–107.

Cooley, M. D. A. & O’Neill, M. E.
1969
On the slow motion generated in a viscous fluid by the approach of a sphere to a plane wall or stationary sphere. Mathematika
16, 37–49.

Cox, R. G. & Brenner, H.
1971
The rheology of a suspension of particles in a Newtonian fluid. Chem. Eng. Sci.
26, 65–93.

Durlofsky, L., Brady, J. F. & Bossis, G.
1987
Dynamic simulation of hydrodynamically interacting particles. J. Fluid Mech.
180, 21–49.

Ehrl, L., Soos, M. & Lattuada, M.
2009
Generation and geometrical analysis of dense clusters with variable fractal dimension. J. Phys. Chem. B
113, 10587–10599.

Filippov, A. V.
2000
Drag and torque on clusters of
$N$
arbitrary spheres at low Reynolds number. J. Colloid Interface Sci.
229, 184–195.
Guckel, E. K.1999 Large scale simulations of particulate systems using the PME method. PhD thesis, University of Illinois, Urbana-Champaign.

Happel, J. & Brenner, H.
1973
Low Reynolds Number Hydrodynanmics. Nijhoff.

Harshe, Y. M., Ehrl, L. & Lattuada, M.
2010
Hydrodynamic properties of rigid fractal aggregates of arbitrary morphology. J. Colloid Interface Sci.
352, 87–98.

Huang, H.
1994
Fractal properties of flocs formed by fluid shear and differential settling. Phys. Fluids
6, 3229–3234.

Ingber, M. S., Feng, S., Graham, A. L. & Brenner, H.
2008
The analysis of self-diffusion and migration of rough spheres in nonlinear shear flow using a traction-corrected boundary element method. J. Fluid Mech.
598, 267–292.

Jiang, Q. & Logan, B. E.
1991
Fractal dimensions of aggregates determined from steady-state size distributions. Environ. Sci. Technol.
25, 2031–2038.

Jullien, R., Botet, R. & Mors, P. M.
1987
Computer simulation of cluster–cluster aggregation. Faraday Discuss. Chem. Soc.
83, 125–137.

Kumar, A. & Higdon, J. J. L.
2011
Particle mesh Ewald Stokesian dynamics simulations for suspensions of nonspherical particles. J. Fluid Mech.
675, 297–335.

Lattuada, M., Wu, H. & Morbidelli, M.
2003
A simple model for the structure of fractal aggregates. J. Colloid Interface Sci.
268, 106–120.

Logan, B. E. & Kilps, J. R.
1995
Fractal dimensions of aggregates formed in different fluid mechanical environments. Water Res.
29, 443–453.

Logan, B. E. & Wilkinson, D. B.
1990
Fractal geometry of marine snow and other biological aggregates. Limnol. Oceanogr.
35, 130–136.

Meakin, P.
1984
Effect of cluster trajectories on cluster–cluster aggregation: a comparison of linear and Brownian trajectories in two- and three-dimensional simulations. Phys. Rev. A
29, 997–999.

Meakin, P.
1985
Accretion processes with linear particle trajectories. J. Colloid Interface Sci.
105, 240–246.

Meakin, P. & Family, F.
1987
Structure and dynamics of reaction-limited aggregation. Phys. Rev. A
36, 5498–5501.

Meng, Q. & Higdon, J. J. L.
2008
Large scale dynamic simulation of plate-like particle suspensions. Part I: Non-Brownian simulation. J. Rheol.
52, 1–36.

Mo, G. & Sangani, A. S.
1994
A method for computing Stokes flow interactions among spherical objects and its application to suspensions of drops and porous particles. Phys. Fluids
6, 1637–1652.

O’Neill, M. E. & Majumdar, S. R.
1970
Asymmetrical slow viscous fluid motions caused by the translation or rotation of two spheres. Part II: Asymptotic forms of the solutions when the minimum clearance between the spheres approaches zero. Z. Angew. Math. Phys.
21, 180–189.

Power, H. & Miranda, G.
1987
Second kind integral equation formulation of Stokes flow past a particle of arbitrary shape. SIAM J. Appl. Maths
47, 689–698.

Sangani, A. S. & Acrivos, A.
1982
Slow flow through a periodic array of spheres. Int. J. Multiphase Flow
8, 343–360.

Sangani, A. S. & Mo, G.
1994
Inclusion of lubrication forces in dynamic simulations. Phys. Fluids
6, 1653–1662.

Schaefer, D. W.
1989
Polymers, fractals and ceramic materials. Science
243, 1023–1027.

Schmitz, R. & Felderhof, B. U.
1982
Creeping flow about a spherical particle. Physica
113A, 90–102.

Sierou, A. & Brady, J. F.
2001
Accelerated Stokesian dynamics simulations. J. Fluid Mech.
448, 115–146.

Sutherland, D. N.
1966
Comments on Vold’s simulation of floc formation. J. Colloid Interface Sci.
22, 300–302.

Thouy, R. & Jullien, R.
1996
Structure factors for fractal aggregates built off-lattice with tunable fractal dimension. J. Phys. I (Paris)
6, 1365–1376.

Torres, F. E., Russel, W. B. & Schowalter, W. R.
1991a
Floc structure and growth kinetics for rapid shear coagulation of polystyrene colloids. J. Colloid Interface Sci.
142, 554–574.

Torres, F. E., Russel, W. B. & Schowalter, W. R.
1991b
Simulations of coagulation in viscous flows. J. Colloid Interface Sci.
145, 51–73.

Vanni, M.
2000
Creeping flow over spherical permeable aggregates. Chem. Engng Sci.
55, 685–698.

Verwey, E. J. W. & Overbeek, J. Th. G.
1948
Theory of the Stability of Lyophobic Colloids. Elsevier.

Zinchenko, A. Z.
1994
An efficient algorithm for calculating multiparticle thermal interaction in a concentrated dispersion of spheres. J. Comput. Phys.
111, 120–135.

Zinchenko, A. Z.
1998
Effective conductivity of loaded granular materials by numerical simulation. Phil. Trans. R. Soc. Lond. A
356, 2953–2998.

Zinchenko, A. Z. & Davis, R. H.
2000
An efficient algorithm for hydrodynamical interaction of many deformable drops. J. Comput. Phys.
157, 539–587.

Zinchenko, A. Z. & Davis, R. H.
2002
Shear flow of highly concentrated emulsions of deformable drops by numerical simulations. J. Fluid Mech.
455, 21–62.

Zinchenko, A. Z. & Davis, R. H.
2008
Algorithm for direct numerical simulation of emulsion flow through a granular material. J. Comput. Phys.
227, 7841–7888.

Zinchenko, A. Z. & Davis, R. H.
2013
Emulsion flow through a packed bed with multiple drop breakup. J. Fluid Mech.
725, 611–663.

Zinchenko, A. Z., Rother, M. A. & Davis, R. H.
2011
Gravity-induced collisions of spherical drops covered with compressible surfactant. J. Fluid Mech.
667, 369–402.