Skip to main content Accessibility help
×
Home

Flow instabilities in the wake of a circular cylinder with parallel dual splitter plates attached

  • Rui Wang (a1), Yan Bao (a1) (a2), Dai Zhou (a1) (a2) (a3) (a4), Hongbo Zhu (a1), Huan Ping (a1), Zhaolong Han (a1) (a2), Douglas Serson (a5) and Hui Xu (a6)...

Abstract

In this paper, instabilities in the flow over a circular cylinder of diameter $D$ with dual splitter plates attached to its rear surface are numerically investigated using the spectral element method. The key parameters are the splitter plate length $L$ , the attachment angle $\unicode[STIX]{x1D6FC}$ and the Reynolds number $Re$ . The presence of the plates was found to significantly modify the flow topology, leading to substantial changes in both the primary and secondary instabilities. The results showed that the three instability modes present in the bare circular cylinder wake still exist in the wake of the present configurations and that, in general, the occurrences of modes A and B are delayed, while the onset of mode QP is earlier in the presence of the splitter plates. Furthermore, two new synchronous modes, referred to as mode A $^{\prime }$ and mode B $^{\prime }$ , are found to develop in the wake. Mode A $^{\prime }$ is similar to mode A but with a quite long critical wavelength. Mode B $^{\prime }$ shares the same spatio-temporal symmetries as mode B but has a distinct spatial structure. With the exception of the case of $L/D=0.25$ , mode A $^{\prime }$ persists for all configurations investigated here and always precedes the transition through mode A. The onset of mode B $^{\prime }$ occurs for $\unicode[STIX]{x1D6FC}>20^{\circ }$ with $L/D=1.0$ and for $L/D>0.5$ with $\unicode[STIX]{x1D6FC}=60^{\circ }$ . The characteristics of all the transition modes are analysed, and their similarities and differences are discussed in detail in comparison with the existing modes. In addition, the physical mechanism responsible for the instability mode B $^{\prime }$ is proposed. The weakly nonlinear feature of mode B $^{\prime }$ , as well as that of mode A $^{\prime }$ , is assessed by employing the Landau model. Finally, selected three-dimensional simulations are performed to confirm the existence of these two new modes and to investigate the nonlinear evolution of the three-dimensional modes.

Copyright

Corresponding author

Email addresses for correspondence: ybao@sjtu.edu.cn, zhoudai@sjtu.edu.cn

References

Hide All
Abdi, R., Rezazadeh, N. & Abdi, M. 2017 Reduction of fluid forces and vortex shedding frequency of a circular cylinder using rigid splitter plates. Eur. J. Comput. Mech. 26 (3), 225244.
Åkervik, E., Brandt, L., Henningson, D. S., Hœpffner, J., Marxen, O. & Schlatter, P. 2006 Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18 (6), 068102.
Assi, G. R. S., Bearman, P. W. & Kitney, N. 2009 Low drag solutions for suppressing vortex-induced vibration of circular cylinders. J. Fluids Struct. 25 (4), 666675.
Assi, G. R. S., Bearman, P. W., Kitney, N. & Tognarelli, M. A. 2010 Suppression of wake-induced vibration of tandem cylinders with free-to-rotate control plates. J. Fluids Struct. 26 (7-8), 10451057.
Assi, G. R. S., Franco, G. S. & Vestri, M. S. 2014 Investigation on the stability of parallel and oblique plates as suppressors of vortex-induced vibration of a circular cylinder. J. Offshore Mech. Arctic Engng. 136 (3), 031802.
Assi, G. R. S., Rodrigues, J. R. H. & Freire, C. M. 2012 The effect of plate length on the behaviour of free-to-rotate viv suppressors with parallel plates. In ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, pp. 791798. ASME.
Baarholm, R., Skaugset, K., Lie, H. & Braaten, H. 2015 Experimental studies of hydrodynamic properties and screening of riser fairing concepts for deep water applications. In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, p. V002T08A054. ASME.
Bao, Y. & Tao, J. 2013 The passive control of wake flow behind a circular cylinder by parallel dual plates. J. Fluids Struct. 37, 201219.
Barkley, D. & Henderson, R. D. 1996 Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241.
Blackburn, H. M., Marques, F. & Lopez, J. M. 2005 Symmetry breaking of two-dimensional time-periodic wakes. J. Fluid Mech. 522, 395411.
Cantwell, C. D., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G., De Grazia, D., Yakovlev, S., Lombard, J. E., Ekelschot, D. et al. 2015 Nektar++: an open-source spectral/hp element framework. Comput. Phys. Commun. 192, 205219.
Carmo, B. S., Meneghini, J. R. & Sherwin, S. J. 2010 Secondary instabilities in the flow around two circular cylinders in tandem. J. Fluid Mech. 644, 395431.
Carmo, B. S., Sherwin, S. J., Bearman, P. W. & Willden, R. H. J. 2008 Wake transition in the flow around two circular cylinders in staggered arrangements. J. Fluid Mech. 597, 129.
Chandrmohan, A. A.2009 Effect of base cavities on the drag and wake of a two-dimensional bluff body. PhD thesis, King Fahd University of Petroleum and Minerals.
Choi, H., Jeon, W. P. & Kim, J. 2008 Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40 (1), 113139.
Dušek, J., Le Gal, P. & Fraunié, P. 1994 A numerical and theoretical study of the first Hopf bifurcation in a cylinder wake. J. Fluid Mech. 264, 5980.
Grimminger, G.1945 The effect of rigid guide vanes on the vibration and drag of a towed circular cylinder. Tech. Rep. 504. David Taylor Model Basin, Washinton DC, USA.
Guermond, J. L. & Shen, J. 2003 Velocity-correction projection methods for incompressible flows. SIAM J. Numer. Anal. 41 (1), 112134.
Henderson, R. D. 1995 Details of the drag curve near the onset of vortex shedding. Phys. Fluids 7 (9), 21022104.
Henderson, R. D. 1997 Nonlinear dynamics and pattern formation in turbulent wake transition. J. Fluid Mech. 352, 65112.
Henderson, R. D. & Barkley, D. 1996 Secondary instability in the wake of a circular cylinder. Phys. Fluids 8 (6), 16831685.
Jiménez-González, J. I., Sanmiguel-Rojas, E., Sevilla, A. & Martínez-Bazán, C. 2013 Laminar flow past a spinning bullet-shaped body at moderate angular velocities. J. Fluids Struct. 43, 200219.
Karniadakis, G. E. 1990 Spectral element-Fourier methods for incompressible turbulent flows. Comput. Meth. Appl. Mech. Engng 80 (1-3), 367380.
Karniadakis, G. E., Israeli, M. & Orszag, S. A. 1991 High-order splitting methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 97 (2), 414443.
Karniadakis, G. E. & Sherwin, S. J. 2013 Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press.
Kevlahan, N. K. R. 2007 Three-dimensional Floquet stability analysis of the wake in cylinder arrays. J. Fluid Mech. 592, 7988.
Kruiswyk, R. W. & Dutton, J. C. 1990 Effects of a base cavity on subsonic near-wake flow. AIAA J. 28 (11), 18851893.
Kumar, B. & Mittal, S. 2006 Prediction of the critical Reynolds number for flow past a circular cylinder. Comput. Meth. Appl. Mech. Engng 195 (44-47), 60466058.
Lagnado, R. R., Phan-Thien, N. & Leal, L. G. 1984 The stability of two-dimensional linear flows. Phys. Fluids 27 (5), 10941101.
Law, Y. Z. & Jaiman, R. K. 2017 Wake stabilization mechanism of low-drag suppression devices for vortex-induced vibration. J. Fluids Struct. 70, 428449.
Leontini, J. S., Lo Jacono, D. & Thompson, M. C. 2015 Stability analysis of the elliptic cylinder wake. J. Fluid Mech. 763, 302321.
Mamun, C. K. & Tuckerman, L. S. 1995 Asymmetry and Hopf bifurcation in spherical Couette flow. Phys. Fluids 7 (1), 8091.
Marques, F., Lopez, J. M. & Blackburn, H. M. 2004 Bifurcations in systems with Z2 spatio-temporal and O(2) spatial symmetry. Phys. D 189 (3), 247276.
Molezzi, M. J. & Dutton, J. C. 1995 Study of subsonic base cavity flowfield structure using particle image velocimetry. AIAA J. 33 (2), 201209.
Ng, Z. Y., Vo, T. & Sheard, G. J. 2018 Stability of the wakes of cylinders with triangular cross-sections. J. Fluid Mech. 844, 721745.
Park, D. & Yang, K. 2016 Flow instabilities in the wake of a rounded square cylinder. J. Fluid Mech. 793, 915932.
Pontaza, J. P., Kotikanyadanam, M., Moeleker, P., Menon, R. G. & Bhat, S. 2012 Fairing evaluation based on numerical simulation. In ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, pp. 897905. ASME.
Provansal, M., Mathis, C. & Boyer, L. 1987 Bénard-von Kármán instability: transient and forced regimes. J. Fluid Mech. 182, 122.
Qu, L., Norberg, C., Davidson, L., Peng, S. & Wang, F. 2013 Quantitative numerical analysis of flow past a circular cylinder at Reynolds number between 50 and 200. J. Fluids Struct. 39, 347370.
Rao, A., Leontini, J. S., Thompson, M. C. & Hourigan, K. 2017 Three-dimensionality of elliptical cylinder wakes at low angles of incidence. J. Fluid Mech. 825, 245283.
Rashidi, S., Hayatdavoodi, M. & Esfahani, J. A. 2016 Vortex shedding suppression and wake control: A review. Ocean Engng 126, 5780.
Ryan, K., Thompson, M. C. & Hourigan, K. 2005 Three-dimensional transition in the wake of bluff elongated cylinders. J. Fluid Mech. 538, 129.
Schaudt, K. J., Wajnikonis, C., Spencer, D., Xu, J., Leverette, S. & Masters, R. 2008 Benchmarking of viv suppression systems. In ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering, pp. 3342. ASME.
Serson, D., Meneghini, J. R., Carmo, B. S., Volpe, E. V. & Gioria, R. S. 2014 Wake transition in the flow around a circular cylinder with a splitter plate. J. Fluid Mech. 755, 582602.
Sheard, G. J., Thompson, M. C. & Hourigan, K. 2004 From spheres to circular cylinders: non-axisymmetric transitions in the flow past rings. J. Fluid Mech. 506, 4578.
Taggart, S. & Tognarelli, M. A. 2008 Offshore drilling riser VIV suppression devices: What’s available to operators? In ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering, pp. 527537. ASME.
Taherian, G., Nili-Ahmadabadi, M., Karimi, M. H. & Tavakoli, M. R. 2017 Flow visualization over a thick blunt trailing-edge airfoil with base cavity at low Reynolds numbers using PIV technique. J. Vis. 20 (4), 695710.
Thompson, M. C., Leweke, T. & Williamson, C. H. K. 2001 The physical mechanism of transition in bluff body wakes. J. Fluids Struct. 15 (3-4), 607616.
Williamson, C. H. K. 1988 The existence of two stages in the transition to three-dimensionality of a cylinder wake. Phys. Fluids 31 (11), 31653168.
Williamson, C. H. K. 1996 Three-dimensional wake transition. J. Fluid Mech. 328, 345407.
Xie, F., Yu, Y., Constantinides, Y., Triantafyllou, M. S. & Karniadakis, G. E. 2015 U-shaped fairings suppress vortex-induced vibrations for cylinders in cross-flow. J. Fluid Mech. 782, 300332.
Xu, H., Cantwell, C. D., Monteserin, C., Eskilsson, C., Engsig-Karup, A. P. & Sherwin, S. J. 2018 Spectral/hp element methods: Recent developments, applications, and perspectives. J. Hydrodyn. 30 (1), 122.
Yang, D., Pettersen, B., Andersson, H. I. & Narasimhamurthy, V. D. 2013 Floquet stability analysis of the wake of an inclined flat plate. Phys. Fluids 25 (9), 094103.
Yu, Y., Xie, F., Yan, H., Constantinides, Y., Oakley, O. & Karniadakis, G. E. 2015 Suppression of vortex-induced vibrations by fairings: a numerical study. J. Fluids Struct. 54, 679700.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Flow instabilities in the wake of a circular cylinder with parallel dual splitter plates attached

  • Rui Wang (a1), Yan Bao (a1) (a2), Dai Zhou (a1) (a2) (a3) (a4), Hongbo Zhu (a1), Huan Ping (a1), Zhaolong Han (a1) (a2), Douglas Serson (a5) and Hui Xu (a6)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.