Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-24T06:08:08.590Z Has data issue: false hasContentIssue false

Fingering instability on curved substrates: optimal initial film and substrate perturbations

Published online by Cambridge University Press:  17 April 2019

Gioele Balestra*
Affiliation:
Laboratory of Fluid Mechanics and Instabilities, EPFL, CH1015 Lausanne, Switzerland
Mohamed Badaoui
Affiliation:
Laboratory of Fluid Mechanics and Instabilities, EPFL, CH1015 Lausanne, Switzerland
Yves-Marie Ducimetière
Affiliation:
Laboratory of Fluid Mechanics and Instabilities, EPFL, CH1015 Lausanne, Switzerland
François Gallaire
Affiliation:
Laboratory of Fluid Mechanics and Instabilities, EPFL, CH1015 Lausanne, Switzerland
*
Email address for correspondence: gioele.balestra@epfl.ch

Abstract

We investigate the stability of a thin Newtonian fluid spreading on a horizontal cylinder under the action of gravity. The capillary ridge forming at the advancing front is known to be unstable with respect to spanwise perturbations, resulting in the formation of fingers. In contrast to the classic case of a flow over an inclined plane, the gravity components along a cylindrical substrate vary in space and the draining flow is time-dependent, making a modal stability analysis inappropriate. A linear optimal transient growth analysis is instead performed to find the optimal spanwise wavenumber. We not only consider the optimal perturbations of the initial film thickness, as commonly done in the literature, but also the optimal topographical perturbations of the substrate, which are of significant practical relevance. We found that, in both cases, the optimal gains are obtained when the perturbation structures are the least affected by the time horizon. The optimal spanwise wavenumber is found to be dependent on the front location, due to the dependence of the characteristic length of the capillary ridge on its polar location.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ancey, C., Cochard, S. & Andreini, N. 2009 The dam-break problem for viscous fluids in the high-capillary-number limit. J. Fluid Mech. 624, 122.Google Scholar
Balestra, G., Brun, P.-T. & Gallaire, F. 2016 Rayleigh–Taylor instability under curved substrates: an optimal transient growth analysis. Phys. Rev. Fluids 1 (8), 083902.Google Scholar
Balestra, G., Kofman, N., Brun, P.-T., Scheid, B. & Gallaire, F. 2017 Three-dimensional Rayleigh–Taylor instability under a unidirectional curved substrate. J. Fluid Mech. 837, 1947.Google Scholar
Balmforth, N., Ghadge, S. & Myers, T. 2007 Surface tension driven fingering of a viscoplastic film. J. Non-Newtonian Fluid Mech. 142 (1–3), 143149.Google Scholar
Bertozzi, A. L. & Brenner, M. P. 1997 Linear stability and transient growth in driven contact lines. Phys. Fluids 9 (3), 530539.Google Scholar
Bewley, T. R., Temam, R. & Ziane, M. 2000 A general framework for robust control in fluid mechanics. Physica D 138 (3–4), 360392.Google Scholar
Brenner, M. P. 1993 Instability mechanism at driven contact lines. Phys. Rev. E 47 (6), 45974599.Google Scholar
de Bruyn, J. R., Habdas, P. & Kim, S. 2002 Fingering instability of a sheet of yield-stress fluid. Phys. Rev. E 66 (3), 031504.Google Scholar
Brzoska, J. B., Brochard-Wyart, F. & Rondelez, F. 1992 Exponential growth of fingering instabilities of spreading films under horizontal thermal gradients. Europhys. Lett. 19 (2), 97102.Google Scholar
Cazabat, A. M., Heslot, F., Troian, S. M. & Carles, P. 1990 Fingering instability of thin spreading films driven by temperature gradients. Nature 346 (6287), 824826.Google Scholar
Cossu, C. 2014 An introduction to optimal control: lecture notes from the FLOW-NORDITA Summer School on Advanced Instability Methods for Complex Flows, Stockholm, Sweden, 2013. Appl. Mech. Rev. 66 (2), 024801.Google Scholar
Craster, R. V. & Matar, O. K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81 (3), 11311198.Google Scholar
Davis, S. H. 1983 Contact-line problems in fluid mechanics. J. Appl. Mech. 50 (4b), 977982.Google Scholar
Duffy, B. R. & Moffatt, H. K. 1995 Flow of a viscous trickle on a slowly varying incline. Chem. Engng J. Biochem. Engng J. 60 (1–3), 141146.Google Scholar
Eres, M. H., Schwartz, L. W. & Roy, R. V. 2000 Fingering phenomena for driven coating films. Phys. Fluids 12 (6), 12781295.Google Scholar
Fraysse, N. & Homsy, G. M. 1994 An experimental study of rivulet instabilities in centrifugal spin coating of viscous Newtonian and non-Newtonian fluids. Phys. Fluids 6 (4), 14911504.Google Scholar
Goodwin, R. & Homsy, G. M. 1991 Viscous flow down a slope in the vicinity of a contact line. Phys. Fluids A 3 (4), 515528.Google Scholar
Hocking, L. M. 1990 Spreading and instability of a viscous fluid sheet. J. Fluid Mech. 211, 373392.Google Scholar
Hocking, L. M. & Miksis, M. J. 1993 Stability of a ridge of fluid. J. Fluid Mech. 247, 157177.Google Scholar
Holloway, K. E., Habdas, P., Semsarillar, N., Burfitt, K. & de Bruyn, J. R. 2007 Spreading and fingering in spin coating. Phys. Rev. E 75 (4), 046308.Google Scholar
Huerre, P. & Rossi, M. 1998 Hydrodynamic instabilities in open flows. Collection Alea-Saclay: Monographs and Texts in Statistical Physics 1 (3), 81294.Google Scholar
Huppert, H. E. 1982 Flow and instability of a viscous current down a slope. Nature 300 (5891), 427429.Google Scholar
Huppert, H. E., Shepherd, J. B., Sigurdsson, R. H. & Sparks, S. J. 1982 On lava dome growth, with application to the 1979 lava extrusion of the Soufriere of St Vincent. J. Volcanol. Geotherm. Res. 14 (3–4), 199222.Google Scholar
Indeikina, A., Veretennikov, I. & Chang, H.-C. 1997 Drop fall-off from pendent rivulets. J. Fluid Mech. 338, 173201.Google Scholar
Kalliadasis, S., Bielarz, C. & Homsy, G. 2000 Steady free-surface thin film flows over topography. Phys. Fluids 12 (8), 18891898.Google Scholar
Kataoka, D. E. & Troian, S. M. 1997 A theoretical study of instabilities at the advancing front of thermally driven coating films. J. Colloid Interface Sci. 192 (2), 350362.Google Scholar
Kistler, S. F. & Schweizer, P. M. 1997 Liquid Film Coating: Scientific Principles and Their Technological Implications. Springer.Google Scholar
Kondic, L. 2003 Instabilities in gravity driven flow of thin fluid films. SIAM Rev. 45 (1), 95115.Google Scholar
Kondic, L. & Diez, J. 2001 Pattern formation in the flow of thin films down an incline: constant flux configuration. Phys. Fluids 13 (11), 31683184.Google Scholar
Lee, A., Brun, P.-T., Marthelot, J., Balestra, G., Gallaire, F. & Reis, P. M. 2016 Fabrication of slender elastic shells by the coating of curved surfaces. Nat. Commun. 7, 11155.Google Scholar
Leslie, G. A., Wilson, S. K. & Duffy, B. R. 2013 Three-dimensional coating and rimming flow: a ring of fluid on a rotating horizontal cylinder. J. Fluid Mech. 716, 5182.Google Scholar
Lin, T.-S., Kondic, L. & Filippov, A. 2012 Thin films flowing down inverted substrates: three-dimensional flow. Phys. Fluids 24 (2), 022105.Google Scholar
Melo, F., Joanny, J. F. & Fauve, S. 1989 Fingering instability of spinning drops. Phys. Rev. Lett. 63 (18), 19581961.Google Scholar
Moriarty, J. A., Schwartz, L. W. & Tuck, E. O. 1991 Unsteady spreading of thin liquid films with small surface tension. Phys. Fluids A 3 (5), 733742.Google Scholar
Olsson, P. J. & Henningson, D. S. 1995 Optimal disturbance growth in watertable flow. Stud. Appl. Maths 94 (2), 183210.Google Scholar
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (3), 931980.Google Scholar
Paterson, C., Wilson, S. K. & Duffy, B. R. 2014 Rivulet flow round a horizontal cylinder subject to a uniform surface shear stress. Q. J. Mech. Appl. Maths 67 (4), 567597.Google Scholar
Riboux, G. & Gordillo, J. M. 2014 Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing. Phys. Rev. Lett. 113 (2), 024507.Google Scholar
Riboux, G. & Gordillo, J. M. 2015 The diameters and velocities of the droplets ejected after splashing. J. Fluid Mech. 772, 630648.Google Scholar
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.Google Scholar
Schwartz, L. W. 1989 Viscous flows down an inclined plane: instability and finger formation. Phys. Fluids A 1 (3), 443445.Google Scholar
Schwartz, L. W. & Roy, R. V. 2004 Theoretical and numerical results for spin coating of viscous liquids. Phys. Fluids 16 (3), 569584.Google Scholar
Scriven, L. E. 1988 Physics and applications of DIP coating and spin coating. MRS Symp. Proc. 121, 717.Google Scholar
Silvi, N. & Dussan, V. E. B. 1985 The rewetting of an inclined solid surface by a liquid. Phys. Fluids 28 (1), 57.Google Scholar
Spaid, M. A. & Homsy, G. M. 1996 Stability of Newtonian and viscoelastic dynamic contact lines. Phys. Fluids 8 (2), 460478.Google Scholar
Takagi, D. & Huppert, H. E. 2010 Flow and instability of thin films on a cylinder and sphere. J. Fluid Mech. 647, 221238.Google Scholar
Tanner, L. H. 1986 Les gouttes. Recherche 17, 184.Google Scholar
Thomson, J. 1855 XLII. On certain curious motions observable at the surfaces of wine and other alcoholic liquors. Phil. Mag. Ser. 4 10 (67), 330333.Google Scholar
Trinh, P. H., Kim, H., Hammoud, N., Howell, P. D., Chapman, S. J. & Stone, H. A. 2014 Curvature suppresses the Rayleigh–Taylor instability. Phys. Fluids 26 (5), 051704.Google Scholar
Troian, S. M., Herbolzheimer, E., Safran, S. A. & Joanny, J. F. 1989 Fingering instabilities of driven spreading films. Europhys. Lett. 10 (1), 2530.Google Scholar
Tuck, E. O. & Schwartz, L. W. 1990 A numerical and asymptotic study of some third-order ordinary differential equations relevant to draining and coating flows. SIAM Rev. 32 (3), 453469.Google Scholar
Van Dyke, M.1975 Perturbation methods in fluid mechanics, annotated edition. NASA STI/Recon Tech. Rep. A.75.Google Scholar
Wang, M.-W. & Chou, F.-C. 2001 Fingering instability and maximum radius at high rotational Bond number. J. Electrochem. Soc. 148 (5), G283G290.Google Scholar