Skip to main content Accessibility help
×
Home

Fingering instability on curved substrates: optimal initial film and substrate perturbations

  • Gioele Balestra (a1), Mohamed Badaoui (a1), Yves-Marie Ducimetière (a1) and François Gallaire (a1)

Abstract

We investigate the stability of a thin Newtonian fluid spreading on a horizontal cylinder under the action of gravity. The capillary ridge forming at the advancing front is known to be unstable with respect to spanwise perturbations, resulting in the formation of fingers. In contrast to the classic case of a flow over an inclined plane, the gravity components along a cylindrical substrate vary in space and the draining flow is time-dependent, making a modal stability analysis inappropriate. A linear optimal transient growth analysis is instead performed to find the optimal spanwise wavenumber. We not only consider the optimal perturbations of the initial film thickness, as commonly done in the literature, but also the optimal topographical perturbations of the substrate, which are of significant practical relevance. We found that, in both cases, the optimal gains are obtained when the perturbation structures are the least affected by the time horizon. The optimal spanwise wavenumber is found to be dependent on the front location, due to the dependence of the characteristic length of the capillary ridge on its polar location.

Copyright

Corresponding author

Email address for correspondence: gioele.balestra@epfl.ch

References

Hide All
Ancey, C., Cochard, S. & Andreini, N. 2009 The dam-break problem for viscous fluids in the high-capillary-number limit. J. Fluid Mech. 624, 122.
Balestra, G., Brun, P.-T. & Gallaire, F. 2016 Rayleigh–Taylor instability under curved substrates: an optimal transient growth analysis. Phys. Rev. Fluids 1 (8), 083902.
Balestra, G., Kofman, N., Brun, P.-T., Scheid, B. & Gallaire, F. 2017 Three-dimensional Rayleigh–Taylor instability under a unidirectional curved substrate. J. Fluid Mech. 837, 1947.
Balmforth, N., Ghadge, S. & Myers, T. 2007 Surface tension driven fingering of a viscoplastic film. J. Non-Newtonian Fluid Mech. 142 (1–3), 143149.
Bertozzi, A. L. & Brenner, M. P. 1997 Linear stability and transient growth in driven contact lines. Phys. Fluids 9 (3), 530539.
Bewley, T. R., Temam, R. & Ziane, M. 2000 A general framework for robust control in fluid mechanics. Physica D 138 (3–4), 360392.
Brenner, M. P. 1993 Instability mechanism at driven contact lines. Phys. Rev. E 47 (6), 45974599.
de Bruyn, J. R., Habdas, P. & Kim, S. 2002 Fingering instability of a sheet of yield-stress fluid. Phys. Rev. E 66 (3), 031504.
Brzoska, J. B., Brochard-Wyart, F. & Rondelez, F. 1992 Exponential growth of fingering instabilities of spreading films under horizontal thermal gradients. Europhys. Lett. 19 (2), 97102.
Cazabat, A. M., Heslot, F., Troian, S. M. & Carles, P. 1990 Fingering instability of thin spreading films driven by temperature gradients. Nature 346 (6287), 824826.
Cossu, C. 2014 An introduction to optimal control: lecture notes from the FLOW-NORDITA Summer School on Advanced Instability Methods for Complex Flows, Stockholm, Sweden, 2013. Appl. Mech. Rev. 66 (2), 024801.
Craster, R. V. & Matar, O. K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81 (3), 11311198.
Davis, S. H. 1983 Contact-line problems in fluid mechanics. J. Appl. Mech. 50 (4b), 977982.
Duffy, B. R. & Moffatt, H. K. 1995 Flow of a viscous trickle on a slowly varying incline. Chem. Engng J. Biochem. Engng J. 60 (1–3), 141146.
Eres, M. H., Schwartz, L. W. & Roy, R. V. 2000 Fingering phenomena for driven coating films. Phys. Fluids 12 (6), 12781295.
Fraysse, N. & Homsy, G. M. 1994 An experimental study of rivulet instabilities in centrifugal spin coating of viscous Newtonian and non-Newtonian fluids. Phys. Fluids 6 (4), 14911504.
Goodwin, R. & Homsy, G. M. 1991 Viscous flow down a slope in the vicinity of a contact line. Phys. Fluids A 3 (4), 515528.
Hocking, L. M. 1990 Spreading and instability of a viscous fluid sheet. J. Fluid Mech. 211, 373392.
Hocking, L. M. & Miksis, M. J. 1993 Stability of a ridge of fluid. J. Fluid Mech. 247, 157177.
Holloway, K. E., Habdas, P., Semsarillar, N., Burfitt, K. & de Bruyn, J. R. 2007 Spreading and fingering in spin coating. Phys. Rev. E 75 (4), 046308.
Huerre, P. & Rossi, M. 1998 Hydrodynamic instabilities in open flows. Collection Alea-Saclay: Monographs and Texts in Statistical Physics 1 (3), 81294.
Huppert, H. E. 1982 Flow and instability of a viscous current down a slope. Nature 300 (5891), 427429.
Huppert, H. E., Shepherd, J. B., Sigurdsson, R. H. & Sparks, S. J. 1982 On lava dome growth, with application to the 1979 lava extrusion of the Soufriere of St Vincent. J. Volcanol. Geotherm. Res. 14 (3–4), 199222.
Indeikina, A., Veretennikov, I. & Chang, H.-C. 1997 Drop fall-off from pendent rivulets. J. Fluid Mech. 338, 173201.
Kalliadasis, S., Bielarz, C. & Homsy, G. 2000 Steady free-surface thin film flows over topography. Phys. Fluids 12 (8), 18891898.
Kataoka, D. E. & Troian, S. M. 1997 A theoretical study of instabilities at the advancing front of thermally driven coating films. J. Colloid Interface Sci. 192 (2), 350362.
Kistler, S. F. & Schweizer, P. M. 1997 Liquid Film Coating: Scientific Principles and Their Technological Implications. Springer.
Kondic, L. 2003 Instabilities in gravity driven flow of thin fluid films. SIAM Rev. 45 (1), 95115.
Kondic, L. & Diez, J. 2001 Pattern formation in the flow of thin films down an incline: constant flux configuration. Phys. Fluids 13 (11), 31683184.
Lee, A., Brun, P.-T., Marthelot, J., Balestra, G., Gallaire, F. & Reis, P. M. 2016 Fabrication of slender elastic shells by the coating of curved surfaces. Nat. Commun. 7, 11155.
Leslie, G. A., Wilson, S. K. & Duffy, B. R. 2013 Three-dimensional coating and rimming flow: a ring of fluid on a rotating horizontal cylinder. J. Fluid Mech. 716, 5182.
Lin, T.-S., Kondic, L. & Filippov, A. 2012 Thin films flowing down inverted substrates: three-dimensional flow. Phys. Fluids 24 (2), 022105.
Melo, F., Joanny, J. F. & Fauve, S. 1989 Fingering instability of spinning drops. Phys. Rev. Lett. 63 (18), 19581961.
Moriarty, J. A., Schwartz, L. W. & Tuck, E. O. 1991 Unsteady spreading of thin liquid films with small surface tension. Phys. Fluids A 3 (5), 733742.
Olsson, P. J. & Henningson, D. S. 1995 Optimal disturbance growth in watertable flow. Stud. Appl. Maths 94 (2), 183210.
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (3), 931980.
Paterson, C., Wilson, S. K. & Duffy, B. R. 2014 Rivulet flow round a horizontal cylinder subject to a uniform surface shear stress. Q. J. Mech. Appl. Maths 67 (4), 567597.
Riboux, G. & Gordillo, J. M. 2014 Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing. Phys. Rev. Lett. 113 (2), 024507.
Riboux, G. & Gordillo, J. M. 2015 The diameters and velocities of the droplets ejected after splashing. J. Fluid Mech. 772, 630648.
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.
Schwartz, L. W. 1989 Viscous flows down an inclined plane: instability and finger formation. Phys. Fluids A 1 (3), 443445.
Schwartz, L. W. & Roy, R. V. 2004 Theoretical and numerical results for spin coating of viscous liquids. Phys. Fluids 16 (3), 569584.
Scriven, L. E. 1988 Physics and applications of DIP coating and spin coating. MRS Symp. Proc. 121, 717.
Silvi, N. & Dussan, V. E. B. 1985 The rewetting of an inclined solid surface by a liquid. Phys. Fluids 28 (1), 57.
Spaid, M. A. & Homsy, G. M. 1996 Stability of Newtonian and viscoelastic dynamic contact lines. Phys. Fluids 8 (2), 460478.
Takagi, D. & Huppert, H. E. 2010 Flow and instability of thin films on a cylinder and sphere. J. Fluid Mech. 647, 221238.
Tanner, L. H. 1986 Les gouttes. Recherche 17, 184.
Thomson, J. 1855 XLII. On certain curious motions observable at the surfaces of wine and other alcoholic liquors. Phil. Mag. Ser. 4 10 (67), 330333.
Trinh, P. H., Kim, H., Hammoud, N., Howell, P. D., Chapman, S. J. & Stone, H. A. 2014 Curvature suppresses the Rayleigh–Taylor instability. Phys. Fluids 26 (5), 051704.
Troian, S. M., Herbolzheimer, E., Safran, S. A. & Joanny, J. F. 1989 Fingering instabilities of driven spreading films. Europhys. Lett. 10 (1), 2530.
Tuck, E. O. & Schwartz, L. W. 1990 A numerical and asymptotic study of some third-order ordinary differential equations relevant to draining and coating flows. SIAM Rev. 32 (3), 453469.
Van Dyke, M.1975 Perturbation methods in fluid mechanics, annotated edition. NASA STI/Recon Tech. Rep. A.75.
Wang, M.-W. & Chou, F.-C. 2001 Fingering instability and maximum radius at high rotational Bond number. J. Electrochem. Soc. 148 (5), G283G290.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Fingering instability on curved substrates: optimal initial film and substrate perturbations

  • Gioele Balestra (a1), Mohamed Badaoui (a1), Yves-Marie Ducimetière (a1) and François Gallaire (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.