Skip to main content Accessibility help
×
Home

Evolution of elliptic synthetic jets at low Reynolds number

  • Xu-Dong Shi (a1), Li-Hao Feng (a1) and Jin-Jun Wang (a1)

Abstract

The influence of the nozzle aspect ratio ( $AR=1$ , 2 and 4), stroke length ( $L_{0}=1.85$ , 3.7 and 5.55) and Reynolds number ( $Re=79$ , 158, 316 and 632) on the behaviour of elliptic synthetic jets is studied experimentally. Laser-induced fluorescence and two-dimensional and stereoscopic particle image velocimetry are used to analyse the vortex dynamics and evolution mechanism. It is found that the fluid elements around the major axis of an elliptic vortex ring move downstream faster and tend to approach the centreline, while the fluid elements around the minor axis move downstream at a slower speed and away from the centreline, thereby resulting in the occurrence of the well-known axis-switching phenomenon for elliptic synthetic jets. During this process, a pair of arc-like vortices forms ahead of the primary vortex ring, and they are constituted by streamwise vortices in the leg part and spanwise vortices in the head part; two pairs of streamwise vortices form from the inside of the primary vortex ring and develop in the tails. The streamwise vortices are pushed away progressively from the centreline by the synthetic jet vortex rings that are formed during the subsequent periods. These additional vortical structures for non-circular synthetic jets show regular and periodic characteristics, which are quite different from the previous findings for non-circular jets. Their mutual interaction with the vortex ring causes significant changes in the topology of elliptic synthetic jets, which further results in the variation of the statistical characteristics. Increasing the aspect ratio, stroke length and Reynolds number will make the evolution of the synthetic jet become more unstable and complex. In addition, the entrainment rate of an elliptical synthetic jet is larger than that of a circular synthetic jet and it increases with the nozzle aspect ratio ( $AR\leqslant 4$ ) and Reynolds number. It is indicated that the formation of streamwise vortices could enhance the entrainment rate. This finding provides substantial evidence for the potential application of elliptic synthetic jets for effective flow control.

Copyright

Corresponding author

Email address for correspondence: lhfeng@buaa.edu.cn

References

Hide All
Abdou, S. & Ziada, S. 2006 Spanwise characteristics of high-aspect-ratio synthetic jet. AIAA J. 44 (7), 15161523.
Austin, T. R.1993 The small scale topology of a 2 : 1 aspect-ratio elliptic jet. PhD thesis, University of Southern California, Los Angeles.
Batchelor, G. K. 1967 An Introduction to Fluid Mechanics. Cambridge University Press.
Brancher, P., Chomaz, J. M. & Huerre, P. 1994 Direct numerical simulations of round jets: vortex induction and side jets. Phys. Fluids 6 (5), 17681774.10.1063/1.868238
Cantwell, B. & Coles, D. 1983 An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. J. Fluid Mech. 136, 321374.
Champagnat, F., Plyer, A., Le Besnerais, G., Leclaire, B., Davoust, S. & Le Sant, Y. 2011 Fast and accurate PIV computation using highly parallel iterative correlation maximization. Exp. Fluids 50 (4), 11691182.10.1007/s00348-011-1054-x
Cater, J. E. & Soria, J. 2002 The evolution of round zero-net-mass-flux jets. J. Fluid Mech. 472, 167200.10.1017/S0022112002002264
Dennis, D. J. C. & Nickels, T. B. 2008 On the limitations of Taylor’s hypothesis in constructing long structures in a turbulent boundary layer. J. Fluid Mech. 614, 197206.10.1017/S0022112008003352
Di Cicca, G. M. & Iuso, G. 2007 On the near field of an axisymmetric synthetic jet. Fluid Dyn. Res. 39 (9–10), 673693.10.1016/j.fluiddyn.2007.03.002
Duan, T. & Wang, J. J. 2016 Experimental investigation on the evolution of axi-symmetrical synthetic jet. J. Vis. 19 (3), 351358.
Feng, L. H. & Wang, J. J. 2010 Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point. J. Fluid Mech. 662, 232259.
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.10.1017/S0022112097008410
Glezer, A. & Amitay, M. 2002 Synthetic jet. Annu. Rev. Fluid Mech. 34, 503529.10.1146/annurev.fluid.34.090501.094913
Green, M. A., Rowley, C. W. & Haller, G. 2007 Detection of Lagrangian coherent structures in three-dimensional turbulence. J. Fluid Mech. 572, 111120.
Grinstein, F. F. 1995 Self-induced vortex ring dynamics in subsonic rectangular jets. Phys. Fluids 7 (10), 25192521.10.1063/1.868699
Grinstein, F. F. 2001 Vortex dynamics and entrainment in rectangular free jets. J. Fluid Mech. 437, 69101.10.1017/S0022112001004141
Grinstein, F. F. & Devore, C. R. 1996 Dynamics of coherent structures and transition to turbulence in free square jets. Phys. Fluids 8 (5), 12371251.
Gutmark, E. J. & Grinstein, F. F. 1999 Flow control with noncircular jets. Annu. Rev. Fluid Mech. 31, 239272.
Haller, G. 2015 Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47, 137162.10.1146/annurev-fluid-010313-141322
Hashiehbaf, A. & Romano, G. P. 2014 Experimental investigation on circular and non-circular synthetic jets issuing from sharp edge orifices. In 17th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 7–10 July, 2014, pp. 5665.
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. Proceedings of the Summer Program, Center for Turbulence Research, pp. 193208. CTR.
Hussain, F. & Husain, H. S. 1989 Elliptic jets. Part 1. Characteristics of unexcited and excited jets. J. Fluid Mech. 208, 257320.10.1017/S0022112089002843
Husain, H. S. & Hussain, F. 1993 Elliptic jets. Part 3. Dynamics of preferred mode coherent structure. J. Fluid Mech. 248, 315361.10.1017/S0022112093000795
Kotapati, R. B., Mittal, R. & Cattafesta, L. N. III 2007 Numerical study of a transitional synthetic jet in quiescent external flow. J. Fluid Mech. 581, 287321.
Krishnan, G. & Mohseni, K. 2009 Axisymmetric synthetic jets: an experimental and theoretical examination. AIAA J. 47 (10), 22732283.10.2514/1.42967
Lawson, J. M. & Dawson, J. R. 2013 The formation of turbulent vortex rings by synthetic jets. Phys. Fluids 25 (10), 105113.10.1063/1.4825283
Liepmann, D. & Gharib, M. 1992 The role of streamwise vorticity in the near-field entrainment of round jets. J. Fluid Mech. 245, 643668.
Maxworthy, T. 1972 The structure and stability of vortex rings. J. Fluid Mech. 51 (1), 1532.10.1017/S0022112072001041
Mohseni, K., Ran, H. & Colonius, T. 2001 Numerical experiments on vortex ring formation. J. Fluid Mech. 430, 267282.10.1017/S0022112000003025
Naitoh, T., Fukuda, N., Gotoh, T., Yamada, H. & Nakajima, K. 2002 Experimental study of axial flow in a vortex ring. Phys. Fluids 14 (1), 143149.
O’Farrell, C. & Dabiri, J. O. 2014 Pinch-off of non-axisymmetric vortex rings. J. Fluid Mech. 740, 6196.
Oren, L., Gutmark, E., Muragappan, S. & Khosla, S.2009 Flow characteristics of non circular synthetic jets. AIAA Paper 2009-1309.
Oren, L., Gutmark, E., Muragappan, S. & Khosla, S.2010 Turbulence characteristics of axisymmetric and non-circular synthetic jets. AIAA Paper 2010-1261.
Oshima, y., Izutsu, N., Oshima, K. & Hussain, A. K. M. F. 1988 Bifurcation of an elliptic vortex ring. Fluid Dyn. Res. 3, 133139.10.1016/0169-5983(88)90056-1
Pan, C., Wang, H. P. & Wang, J. J. 2013 Phase identification of quasi-periodic flow measured by particle image velocimetry with a low sampling rate. Meas. Sci. Technol. 24, 055305.
Pan, C., Xue, D., Xu, Y., Wang, J. J. & Wei, R. J. 2015 Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application. Sci. China Phys. Mech. Astron. 58 (10), 104704.10.1007/s11433-015-5719-y
Quinn, W. R. 2007 Experimental study of the near field and transition region of a free jet issuing from a sharp-edged elliptic nozzle plate. Eur. J. Mech. (B/Fluids) 26 (4), 583614.
Raffel, M., Willert, C. E., Wereley, S. T. & Kompenhans, J. 2007 Particle Image Velocimetry: A Practical Guide. Springer.
Ravi, B. R., Mittal, R. & Najjar, F. M.2004 Study of three-dimensional synthetic jet flowfields using direct numerical simulation. AIAA Paper 2004-0091.
Ravi, B. R. & Mittal, R.2006 Numerical study of large aspect-ratio synthetic jets. AIAA Paper 2006-0315.
Scarano, F. & Riethmuller, M. L. 1999 Iterative multigrid approach in PIV image processing with discrete window offset. Exp. Fluids 26 (6), 513523.10.1007/s003480050318
Shan, R. Q. & Wang, J. J. 2010 Experimental studies of the influence of parameters on axisymmetric synthetic jets. Sensors Actuators A 157 (1), 107112.10.1016/j.sna.2009.11.006
Sahni, O., Wood, J., Jansen, K. E. & Amitay, M. 2011 Three-dimensional interactions between a finite-span synthetic jet and cross-flow. J. Fluid Mech. 671, 254287.
Shuster, J. M. & Smith, D. R. 2007 Experimental study of the formation and scaling of a round synthetic jet. Phys. Fluids 19 (4), 045109.
Smith, B. L. & Swift, G. W. 2003 A comparison between synthetic jets and continuous jets. Exp. Fluids 34 (4), 467472.
Smith, B. L. & Glezer, A. 1998 The formation and evolution of synthetic jet. Phys. Fluids 10 (9), 22812297.10.1063/1.869828
Sung, J. & Yoo, J. Y. 2003 Near-wake vortex motions behind a circular cylinder at low Reynolds number. J. Fluids Struct. 17 (2), 261274.10.1016/S0889-9746(02)00117-2
Tang, H. & Zhong, S.2005 Modelling of the characteristics of synthetic jet actuators. AIAA Paper 2005-4748.10.2514/6.2005-4748
Tang, H. & Zhong, S. 2015 Simulation and modeling of synthetic jets. Vortex Rings and Jets: Recent Developments in Near-Field Dynamics, pp. 93144. Springer.
Toyoda, K. & Hiramoto, R. 2009 Manipulation of vortex rings for flow control. Fluid Dyn. Res. 41 (5), 051402.
Toyoda, K. & Mori, H. 2001 Three-dimensional vortical structure and mixing mechanism of a circular jet. J. Vis. 4 (3), 239244.
Xia, Q. & Zhong, S. 2012 A PLIF and PIV study of liquid mixing enhanced by a lateral synthetic jet pair. Intl J. Heat Fluid Flow 37, 6473.
Yamada, H. & Matsui, T. 1979 Mutual slip-through of a pair of vortex rings. Phys. Fluids 22 (7), 12451249.
Zawadzki, I. & Aref, H. 1991 Mixing during vortex ring collision. Phys. Fluids A 3 (5), 14051410.
Zhang, H., Chen, Z., Li, B. & Jiang, X. 2014 The secondary vortex rings of a supersonic underexpanded circular jet with low pressure ratio. Eur. J. Mech. (B/Fluids) 46, 172180.
Zhang, P. F., Wang, J. J. & Feng, L. H. 2008 Review of zero-net-mass-flux jet and its application in separation flow control. Sci. China Ser. E 51 (9), 13151344.
Zhong, S., Jabbal, M., Tang, H., Garcillan, L., Guo, F., Wood, N. & Warsop, C. 2007 Towards the design of synthetic-jet actuators for full-scale flight conditions. Part 1: The fluid mechanics of synthetic-jet actuators. Flow Turbul. Combust. 78 (3–4), 283307.
Zhong, S. & Zhang, S. 2013 Further examination of the mechanism of round synthetic jets in delaying turbulent flow separation. Flow Turbul. Combust. 91 (1), 177208.
Zhou, J., Tang, H. & Zhong, S. 2009 Vortex roll-up criterion for synthetic jets. AIAA J. 47 (5), 12521262.10.2514/1.40602
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed