Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-08T21:18:42.209Z Has data issue: false hasContentIssue false

A driving mechanism of near-wall turbulence subject to adverse pressure gradient in a plane Couette flow

Published online by Cambridge University Press:  03 May 2022

Yuxin Jiao*
Affiliation:
Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
Sergei I. Chernyshenko
Affiliation:
Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
Yongyun Hwang
Affiliation:
Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
*
Email address for correspondence: y.jiao17@imperial.ac.uk

Abstract

The effect of adverse pressure gradient (APG) on near-wall turbulence is studied, with a particular attention to the turbulence production mechanism. A plane turbulent Couette flow is considered for several values of constant APG in the lower wall region. A direct numerical simulation (DNS) in a large computational domain shows that turbulence near the lower wall continues to exist even at sufficiently large APGs. On increasing the APG, the cross-streamwise turbulence intensities increase, and the near-wall streaks gradually disappear. A linear analysis using the optimal transient growth indicates that the APG inhibits the generation of near-wall streaks due to the significant reduction of the mean shear in the region near the lower wall. The turbulent fluctuation dynamics beyond the linear regime is studied with a DNS in a minimal flow unit. The near-wall self-sustaining process involving streaks is significantly weakened or destroyed as APG increases, while the turbulent fluctuations become more isotropic and localised. Using a conditional averaging analysis, a new mechanism of near-wall turbulence production under strong APG is uncovered. This mechanism is initiated by the wall-normal nonlinear transport of an outer wall-normal velocity fluctuation to the near-wall region. The transported wall-normal velocity fluctuation is subsequently amplified via the Orr mechanism, resulting in the non-zero turbulence production involving spatially localised vortical structures. This mechanism is also confirmed by DNS of the flow in a large computational domain, where strong correlation between the wall-normal nonlinear transport and turbulence production is observed.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abe, H., Kawamura, H. & Choi, H. 2004 Very large-scale structures and their effects on the wall shear-stress fluctuations in a turbulent channel flow up to $Re_{\tau }=640$. Trans. ASME J. Fluids Engng 126 (5), 835843.CrossRefGoogle Scholar
Adrian, R.J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19 (4), 041301.CrossRefGoogle Scholar
Adrian, R.J., Meinhart, C.D. & Tomkins, C.D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Agostini, L. & Leschziner, M. 2016 Predicting the response of small-scale near-wall turbulence to large-scale outer motions. Phys. Fluids 28 (1), 015107.CrossRefGoogle Scholar
Agostini, L., Leschziner, M. & Gaitonde, D. 2016 Skewness-induced asymmetric modulation of small-scale turbulence by large-scale structures. Phys. Fluids 28 (1), 015110.CrossRefGoogle Scholar
Bewley, T.R. 2012 Numerical Renaissance: Simulation, Optimization, & Control. Renaissance.Google Scholar
Butler, K.M. & Farrell, B.F. 1993 Optimal perturbations and streak spacing in wall-bounded turbulent shear flow. Phys. Fluids 5 (3), 774777.CrossRefGoogle Scholar
Cassinelli, A., de Giovanetti, M. & Hwang, Y. 2017 Streak instability in near-wall turbulence revisited. J. Turbul. 18 (5), 443464.CrossRefGoogle Scholar
Chernyshenko, S. 2021 Extension of QSQH theory of scale interaction in near-wall turbulence to all velocity components. J. Fluid. Mech. 916, A52.CrossRefGoogle Scholar
Chernyshenko, S.I. & Baig, M.F. 2005 The mechanism of streak formation in near-wall turbulence. J. Fluid Mech. 544, 99131.CrossRefGoogle Scholar
Cho, M., Hwang, Y. & Choi, H. 2018 Scale interactions and spectral energy transfer in turbulent channel flow. J. Fluid Mech. 854, 474504.CrossRefGoogle Scholar
Clauser, F.H. 1954 Turbulent boundary layers in adverse pressure gradients. J. Aeronaut. Sci. 21 (2), 91108.CrossRefGoogle Scholar
Clauser, F.H. 1956 The turbulent boundary layer. In Advances in Applied Mechanics, vol. 4, pp. 1–51. Elsevier.CrossRefGoogle Scholar
Cossu, C., Chevalier, M. & Henningson, D.S. 2007 Optimal secondary energy growth in a plane channel flow. Phys. Fluids 19 (5), 058107.CrossRefGoogle Scholar
Cossu, C., Pujals, G. & Depardon, S. 2009 Optimal transient growth and very large-scale structures in turbulent boundary layers. J. Fluid. Mech. 619, 7994.CrossRefGoogle Scholar
Del Alamo, J.C. & Jimenez, J. 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.CrossRefGoogle Scholar
Doohan, P., Willis, A. & Hwang, Y. 2019 Shear stress-driven flow: the state space of near-wall turbulence as $Re_{\tau }\rightarrow \infty$. J. Fluid Mech. 874, 606638.CrossRefGoogle Scholar
Doohan, P., Willis, A.P. & Hwang, Y. 2021 Minimal multi-scale dynamics of near-wall turbulence. J. Fluid Mech. 874, 606638.CrossRefGoogle Scholar
Durbin, P.A. & Belcher, S.E. 1992 Scaling of adverse-pressure-gradient turbulent boundary layers. J. Fluid Mech. 238, 699722.CrossRefGoogle Scholar
Duvvuri, S. & McKeon, B.J. 2015 Triadic scale interactions in a turbulent boundary layer. J. Fluid Mech. 767, R4.CrossRefGoogle Scholar
Ellingsen, T. & Palm, E. 1975 Stability of linear flow. Phys. Fluids 18 (4), 487488.CrossRefGoogle Scholar
Encinar, J. & Jiménez, J. 2020 Momentum transfer by linearised eddies in turbulent channel flows. J. Fluid Mech. 895, A23.CrossRefGoogle Scholar
Farrell, B.F. & Ioannou, P.J. 1993 Optimal excitation of three-dimensional perturbations in viscous constant shear flow. Phys. Fluids 5 (6), 13901400.CrossRefGoogle Scholar
Flores, O. & Jiménez, J. 2010 Hierarchy of minimal flow units in the logarithmic layer. Phys. Fluids 22 (7), 071704.CrossRefGoogle Scholar
Ganapathisubramani, B., Hutchins, N., Monty, J.P., Chung, D. & Marusic, I. 2012 Amplitude and frequency modulation in wall turbulence. J. Fluid Mech. 712, 6191.CrossRefGoogle Scholar
George, W.K. & Castillo, L. 1993 Boundary layers with pressure gradient: another look at the equilibrium boundary layer. In Near-Wall Turbulent Flows (ed. R.M.C. So, C.G. Speziale & B.E. Launder), pp. 901910.Google Scholar
Guala, M., Metzger, M. & McKeon, B.J. 2011 Interactions within the turbulent boundary layer at high Reynolds number. J. Fluid Mech. 666, 573604.CrossRefGoogle Scholar
Gungor, A.G., Maciel, Y., Simens, M.P. & Soria, J. 2016 Scaling and statistics of large-defect adverse pressure gradient turbulent boundary layers. Intl J. Heat Fluid Flow 59, 109124.CrossRefGoogle Scholar
Hamilton, J.M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.CrossRefGoogle Scholar
Harun, Z., Monty, J.P., Mathis, R. & Marusic, I. 2013 Pressure gradient effects on the large-scale structure of turbulent boundary layers. J. Fluid Mech. 715, 477498.CrossRefGoogle Scholar
Hœpffner, J., Brandt, L. & Henningson, D.S. 2005 Transient growth on boundary layer streaks. J. Fluid Mech. 537, 91100.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 a Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 b Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A 365 (1852), 647664.Google ScholarPubMed
Hwang, Y. 2015 Statistical structure of self-sustaining attached eddies in turbulent channel flow. J. Fluid Mech. 767, 254289.CrossRefGoogle Scholar
Hwang, Y. & Bengana, Y. 2016 Self-sustaining process of minimal attached eddies in turbulent channel flow. J. Fluid Mech. 795, 708738.CrossRefGoogle Scholar
Hwang, Y. & Cossu, C. 2010 a Amplification of coherent streaks in the turbulent Couette flow: an input-output analysis at low Reynolds number. J. Fluid Mech. 643, 333348.CrossRefGoogle Scholar
Hwang, Y. & Cossu, C. 2010 b Linear non-normal energy amplification of harmonic and stochastic forcing in turbulent channel flow. J. Fluid Mech. 664, 5173.CrossRefGoogle Scholar
Hwang, Y. & Cossu, C. 2010 c Self-sustained process at large scales in turbulent channel flow. Phys. Rev. Lett. 105 (4), 044505.CrossRefGoogle ScholarPubMed
Hwang, Y. & Cossu, C. 2011 Self-sustained processes in the logarithmic layer of turbulent channel flows. Phys. Fluids 23 (6), 061702.CrossRefGoogle Scholar
Jiao, Y., Hwang, Y. & Chernyshenko, S.I. 2021 Orr mechanism in transition of parallel shear flow. Phys. Rev. Fluids 6 (2), 023902.CrossRefGoogle Scholar
Jiménez, J. 2013 How linear is wall-bounded turbulence? Phys. Fluids 25 (11), 110814.CrossRefGoogle Scholar
Jiménez, J. 2015 Direct detection of linearized bursts in turbulence. Phys. Fluids 27 (6), 065102.CrossRefGoogle Scholar
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.CrossRefGoogle Scholar
Jones, W.P. & Launder, B.E. 1972 Some properties of sink-flow turbulent boundary layers. J. Fluid Mech. 56, 337351.CrossRefGoogle Scholar
Kitsios, V., Sekimoto, A., Atkinson, C., Sillero, J.A., Borrell, G., Gungor, A.G., Jiménez, J. & Soria, J. 2017 Direct numerical simulation of a self-similar adverse pressure gradient turbulent boundary layer at the verge of separation. J. Fluid Mech. 829, 392419.CrossRefGoogle Scholar
Komminaho, J., Lundbladh, A. & Johansson, A.V. 1996 Very large structures in plane turbulent Couette flow. J. Fluid Mech. 320, 259285.CrossRefGoogle Scholar
Krogstad, P.-Å. & Skåre, P.E. 1995 Influence of a strong adverse pressure gradient on the turbulent structure in a boundary layer. Phys. Fluids 7 (8), 20142024.CrossRefGoogle Scholar
Landahl, M.T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243251.CrossRefGoogle Scholar
Landahl, M.T. 1990 On sublayer streaks. J. Fluid Mech. 212, 593614.CrossRefGoogle Scholar
Laval, J.-P., Marquillie, M. & Ehrenstein, U. 2012 On the relation between kinetic energy production in adverse-pressure gradient wall turbulence and streak instability. J. Turbul. 13 (21), 119.CrossRefGoogle Scholar
Lee, J., Lee, J.H., Lee, J.-H. & Sung, H.J. 2010 Coherent structures in turbulent boundary layers with adverse pressure gradients. J. Turbul. 11 (28), 120.CrossRefGoogle Scholar
Lee, J.H. 2017 Large-scale motions in turbulent boundary layers subjected to adverse pressure gradients. J. Fluid Mech. 810, 323361.CrossRefGoogle Scholar
Lee, J.-H. & Sung, H.J. 2008 Effects of an adverse pressure gradient on a turbulent boundary layer. Intl J. Heat Fluid Flow 29 (3), 568578.CrossRefGoogle Scholar
Lee, J.-H. & Sung, H.J. 2009 Structures in turbulent boundary layers subjected to adverse pressure gradients. J. Fluid Mech. 639, 101131.CrossRefGoogle Scholar
Lee, M. & Moser, R.D. 2019 Spectral analysis of the budget equation in turbulent channel flows at high Reynolds number. J. Fluid Mech. 860, 886938.CrossRefGoogle Scholar
Marquillie, M., Ehrenstein, U. & Laval, J.-P. 2011 Instability of streaks in wall turbulence with adverse pressure gradient. J. Fluid Mech. 681, 205240.CrossRefGoogle Scholar
Marusic, I. & Perry, A.E. 1995 A wall-wake model for the turbulence structure of boundary layers. Part 2. Further experimental support. J. Fluid Mech. 298, 389407.CrossRefGoogle Scholar
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.CrossRefGoogle Scholar
Mellor, G.L. & Gibson, D.M. 1966 Equilibrium turbulent boundary layers. J. Fluid Mech. 24, 225253.CrossRefGoogle Scholar
Mellor, G.L. 1966 The effects of pressure gradients on turbulent flow near a smooth wall. J. Fluid Mech. 24, 255274.CrossRefGoogle Scholar
Monty, J.P., Hutchins, N., Ng, H.C.H., Marusic, I. & Chong, M.S. 2009 A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431442.CrossRefGoogle Scholar
Monty, J.P., Harun, Z. & Marusic, I. 2011 A parametric study of adverse pressure gradient turbulent boundary layers. Intl J. Heat Fluid Flow 32 (3), 575585.CrossRefGoogle Scholar
Na, Y. & Moin, P. 1998 The structure of wall-pressure fluctuations in turbulent boundary layers with adverse pressure gradient and separation. J. Fluid Mech. 377, 347373.CrossRefGoogle Scholar
Nagano, Y., Tagawa, M. & Tsuji, T. 1993 Effects of adverse pressure gradients on mean flows and turbulence statistics in a boundary layer. In Turbulent Shear Flows 8 (ed. F. Durst, R. Friedrich, B.E. Launder, F.W. Schmidt, U. Schumann & J.H. Whitelaw), pp. 7–21. Springer.CrossRefGoogle Scholar
Orr, W.M.F. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II: A viscous liquid. In Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, vol. 27, pp. 69–138. JSTOR.Google Scholar
Park, D.S. & Huerre, P. 1995 Primary and secondary instabilities of the asymptotic suction boundary layer on a curved plate. J. Fluid Mech. 283, 249272.CrossRefGoogle Scholar
Perry, A.E. & Marusic, I. 1995 A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis. J. Fluid Mech. 298, 361388.CrossRefGoogle Scholar
Pujals, G., García-Villalba, M., Cossu, C. & Depardon, S. 2009 A note on optimal transient growth in turbulent channel flows. Phys. Fluids 21 (1), 015109.CrossRefGoogle Scholar
Rahgozar, S. & Maciel, Y. 2011 Low-and high-speed structures in the outer region of an adverse-pressure-gradient turbulent boundary layer. J. Expl Therm. Fluid Sci. 35 (8), 15751587.CrossRefGoogle Scholar
Rawat, S., Cossu, C., Hwang, Y. & Rincon, F. 2015 On the self-sustained nature of large-scale motions in turbulent Couette flow. J. Fluid Mech. 782, 515540.CrossRefGoogle Scholar
Reddy, S.C. & Henningson, D.S. 1993 Energy growth in viscous channel flows. J. Fluid Mech. 252, 209238.CrossRefGoogle Scholar
Reddy, S.C., Schmid, P.J., Baggett, J.S. & Henningson, D.S. 1998 On the stability of streamwise streaks and transition thresholds in plane channel flows. J. Fluid Mech. 365, 269303.CrossRefGoogle Scholar
Reynolds, W.C. & Hussain, A.K.M.F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54, 263288.CrossRefGoogle Scholar
Schlatter, P. & Örlü, R. 2010 Quantifying the interaction between large and small scales in wall-bounded turbulent flows: a note of caution. Phys. Fluids 22 (5), 051704.CrossRefGoogle Scholar
Schmid, P.J. & Henningson, D.S. 2001 Stability and transition in shear flows. Springer.CrossRefGoogle Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.CrossRefGoogle Scholar
Sekimoto, A., Dong, S. & Jiménez, J. 2016 Direct numerical simulation of statistically stationary and homogeneous shear turbulence and its relation to other shear flows. Phys. Fluids 28 (3), 035101.CrossRefGoogle Scholar
Skote, M. & Henningson, D.S. 2002 Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 471, 107136.CrossRefGoogle Scholar
Skote, M., Henningson, D.S. & Henkes, R.A.W.M. 1998 Direct numerical simulation of self-similar turbulent boundary layers in adverse pressure gradients. Flow Turbul. Combust. 60 (1), 4785.CrossRefGoogle Scholar
Spalart, P.R. & Coleman, G.N. 1997 Numerical study of a separation bubble with heat transfer. Eur. J. Mech. (B/Fluids) 16 (2), 169189.Google Scholar
Spalart, P.R. & Watmuff, J.H. 1993 Experimental and numerical study of a turbulent boundary layer with pressure gradients. J. Fluid Mech. 249, 337371.CrossRefGoogle Scholar
Toh, S. & Itano, T. 2005 Interaction between a large-scale structure and near-wall structures in channel flow. J. Fluid Mech. 524, 249262.CrossRefGoogle Scholar
Tsukahara, T., Kawamura, H. & Shingai, K. 2006 DNS of turbulent Couette flow with emphasis on the large-scale structure in the core region. J. Turbul. 7 (19), 116.CrossRefGoogle Scholar
Vila, C.S., Örlü, R., Vinuesa, R., Schlatter, P., Ianiro, A. & Discetti, S. 2017 Adverse-pressure-gradient effects on turbulent boundary layers: statistics and flow-field organization. Flow Turbul. Combust. 99 (3), 589612.CrossRefGoogle Scholar
Vinuesa, R., Hosseini, S.M., Hanifi, A., Henningson, D.S. & Schlatter, P. 2017 Pressure-gradient turbulent boundary layers developing around a wing section. Flow Turbul. Combust. 99 (3), 613641.CrossRefGoogle ScholarPubMed
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883900.CrossRefGoogle Scholar
Weideman, J.A. & Reddy, S.C. 2000 A matlab differentiation matrix suite. ACM Trans. Math. Softw. 26 (4), 465519.CrossRefGoogle Scholar
Willis, A.P., Hwang, Y. & Cossu, C. 2010 Optimally amplified large-scale streaks and drag reduction in turbulent pipe flow. Phys. Rev. E 82 (3), 036321.CrossRefGoogle ScholarPubMed
Yang, Q., Willis, A.P. & Hwang, Y. 2018 Energy production and self-sustained turbulence at the Kolmogorov scale in Couette flow. J. Fluid Mech. 834, 531554.CrossRefGoogle Scholar
Yang, Q., Willis, A.P. & Hwang, Y. 2019 Exact coherent states of attached eddies in channel flow. J. Fluid Mech. 862, 10291059.CrossRefGoogle Scholar
Zhang, C. & Chernyshenko, S.I. 2016 Quasisteady quasihomogeneous description of the scale interactions in near-wall turbulence. Phys. Rev. Fluids 1 (1), 014401.CrossRefGoogle Scholar