Skip to main content Accessibility help
×
Home

Capillary retraction of the edge of a stretched viscous sheet

  • James P. Munro (a1) and John R. Lister (a1)

Abstract

Surface tension causes the edge of a fluid sheet to retract. If the sheet is also stretched along its edge then the flow and the rate of retraction are modified. A universal similarity solution for the Stokes flow in a stretched edge shows that the scaled shape of the edge is independent of the stretching rate, and that it decays exponentially to its far-field thickness. This solution justifies the use of a stress boundary condition in long-wavelength models of stretched viscous sheets, and gives the detailed shape of the edge of such a sheet, resolving the position of the sheet edge to the order of the thickness.

Copyright

Corresponding author

Email address for correspondence: jpm82@cam.ac.uk

References

Hide All
Billingham, J. 2005 The initial surface tension-driven flow of a wedge of viscous fluid. SIAM J. Appl. Maths 66, 510532.
Bird, J. C., de Ruiter, R., Courbin, L. & Stone, H. A. 2010 Daughter bubble cascades produced by folding of ruptured thin films. Nature 465, 759762.
Brenner, M. P., Eggers, J., Joseph, K., Nagel, S. R. & Shi, X. D. 1997 Breakdown of scaling in droplet fission at high Reynolds number. Phys. Fluids 9, 15731590.
Brenner, M. P. & Gueyffier, D. 1999 On the bursting of viscous films. Phys. Fluids 11, 737739.
Culick, F. E. C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31, 11281129.
Cummings, L. J. & Howell, P. D. 1999 On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity. J. Fluid Mech. 389, 361389.
Dewynne, J. N., Ockendon, J. R. & Wilmott, P. 1992 A systematic derivation of the leading-order equations for extensional flows in slender geometries. J. Fluid Mech. 244, 323338.
Eggers, J. 2014 Post-breakup solutions of Navier–Stokes and Stokes threads. Phys. Fluids 26, 072104.
Eggers, J. & Dupont, T. F. 1994 Drop formation in a one-dimensional approximation of the Navier–Stokes equation. J. Fluid Mech. 262, 205221.
Fadle, J. 1940 Die Selbstspannungs-Eigenwertfunktionen der quadratischen Scheibe. Ing.-Arch. 11, 125148.
Keller, J. B. 1983 Breaking of liquid films and threads. Phys. Fluids 26, 34513453.
Moffatt, H. K. 1964 Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 118.
Munro, J. P., Anthony, C. R., Basaran, O. A. & Lister, J. R. 2015 Thin-sheet flow between coalescing bubbles. J. Fluid Mech. 773, R3.
O’Kiely, D., Breward, C. J. W., Griffiths, I. M., Howell, P. D. & Lange, U. 2015 Edge behaviour in the glass sheet redraw process. J. Fluid Mech. 785, 248269.
Papkovich, P. F. 1940 On one form of solution of the plane problem of the theory of elasticity for a rectangular strip. Dokl. Akad. Nauk SSSR 27, 335339.
Paulsen, J. D., Carmigniani, R., Burton, A., Kannanand, J. C. & Nagel, S. R. 2014 Coalescence of bubbles and drops in an outer fluid. Nat. Commun. 5, 3182.
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.
Savva, N. & Bush, J. W. M. 2009 Viscous sheet retraction. J. Fluid Mech. 626, 211240.
Scheid, B., Quiligotti, S., Tran, B. & Stone, H. A. 2009 Lateral shaping and stability of a stretching viscous sheet. Eur. Phys. J. B 68, 487494.
Taylor, G. I. 1959 The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets. Proc. R. Soc. Lond. A 253, 313321.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Capillary retraction of the edge of a stretched viscous sheet

  • James P. Munro (a1) and John R. Lister (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed