Skip to main content Accessibility help
×
Home

Canonical wall-bounded flows: how do they differ?

  • Alexander J. Smits (a1) (a2)

Abstract

Orlandi et al. (J. Fluid Mech., vol. 770, 2015, pp. 424–441) present direct numerical simulations over a very wide Reynolds number range for plane Couette and Poiseuille flows. The results reveal new information on the abrupt nature of transition in these flows, and the comparisons between Couette and Poiseuille flows help to provide a clearer picture of Reynolds number trends, especially with regard to inner/outer layer interactions. The stress distributions give strong support to Townsend’s attached eddy hypothesis, particularly for the wall-parallel component where there has been little experimental data available. The results pose some intriguing questions regarding the reconciliation of the present results with data at higher Reynolds numbers in different canonical flows.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Canonical wall-bounded flows: how do they differ?
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Canonical wall-bounded flows: how do they differ?
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Canonical wall-bounded flows: how do they differ?
      Available formats
      ×

Copyright

Corresponding author

Email address for correspondence: asmits@princeton.edu

References

Hide All
Hultmark, M., Vallikivi, M., Bailey, S. C. C. & Smits, A. J. 2012 Turbulent pipe flow at extreme Reynolds numbers. Phys. Rev. Lett. 108 (9), 15.
Jiménez, J. & Hoyas, S. 2008 Turbulent fluctuations above the buffer layer of wall-bounded flows. J. Fluid Mech. 611, 215236.
Lozano-Durán, A. & Jiménez, J. 2014 Effect of the computational domain on direct simulations of turbulent channels up to $\mathit{Re}_{{\it\tau}}=4200$ . Phys. Fluids 26, 011702.
Marusic, I., Monty, J. P., Hultmark, M. & Smits, A. J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.
Orlandi, P., Bernardini, M. & Pirozzoli, S. 2011 Large-scale organization and inner–outer layer interactions in turbulent Couette–Poiseuille flows. J. Fluid Mech. 680, 534563.
Orlandi, P., Bernardini, M. & Pirozzoli, S. 2015 Poiseuille and Couette flows in the transitional and fully turbulent regime. J. Fluid Mech. 770, 424441.
Wu, X., Baltzer, J. R. & Adrian, R. J. 2012 Direct numerical simulation of a $30R$ long turbulent pipe flow at $R^{+}=685$ : large- and very large-scale motions. J. Fluid Mech. 698, 235281.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed