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Orlandi et al. (J. Fluid Mech., vol. 770, 2015, pp. 424–441) present direct numerical
simulations over a very wide Reynolds number range for plane Couette and Poiseuille
flows. The results reveal new information on the abrupt nature of transition in these
flows, and the comparisons between Couette and Poiseuille flows help to provide a
clearer picture of Reynolds number trends, especially with regard to inner/outer layer
interactions. The stress distributions give strong support to Townsend’s attached eddy
hypothesis, particularly for the wall-parallel component where there has been little
experimental data available. The results pose some intriguing questions regarding the
reconciliation of the present results with data at higher Reynolds numbers in different
canonical flows.

Key words: boundary layer structure, turbulence simulation

1. Introduction

For practical purposes, we are especially interested in turbulent flows in proximity
to a boundary, often called wall-bounded flows. To make progress in understanding
such flows, researchers have often focused on a small number of canonical flows that
are subject to relatively simple boundary conditions: developing flows such as zero
pressure gradient boundary layers, and a variety of fully developed flows such as
Couette flows and Poiseuille flows.

Orlandi, Bernardini & Pirozzoli (2015) present a comprehensive set of direct
numerical simulations (DNS) for two canonical turbulent flows: plane Poiseuille flow
(where the flow is driven by a pressure gradient), and plane Couette flow (where the
flow is driven by a moving boundary). In both cases, the net acceleration is zero,
and the flow is steady and two-dimensional in the mean. For Poiseuille flow, the
Navier–Stokes equation reduces to

−u′v′ + ν(du/dy)= u2
τ (1− y/h), (1.1)

where τw (=ρu2
τ ) is the wall stress given by −h dpw/dx. Here, pw is the wall pressure,

u′ and v′ are the streamwise and wall-normal velocity fluctuations respectively, y is the
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wall-normal distance, h is the channel half-width, u is the mean velocity, and ρ and ν
are the fluid density and kinematic viscosity. We see that in Poiseuille flow, the total
stress, that is, the sum of the turbulent and viscous stresses, varies linearly across the
flow. Couette flow is even simpler, in that the total stress is constant.

Equation (1.1) also illustrates the essential character of all wall-bounded turbulent
flows, in that the relative influence of the viscous and turbulent stresses depends on the
distance from the wall. In the region near the wall (the ‘inner region’), the turbulent
velocity fluctuations go to zero to satisfy the no-slip condition, and the mean velocity
gradients are high so that the viscous stress dominates. Moving away from the wall,
the turbulence level rises quickly while the mean velocity gradient decreases, and far
from the wall in the ‘outer region’ the viscous stress are negligible compared to the
turbulent stresses.

One of the most interesting questions in studying wall-bounded flows is the level
of interaction between the inner and outer flow. The ratio of outer length scale h to
the inner length scale ν/uτ represents the ‘friction’ Reynolds number Reτ = huτ/ν. We
expect that as Reτ increases, the distinction between the inner scaling and the outer
scaling will sharpen, but will there be a point where the inner and outer layer become
independent?

2. Overview

The DNS results presented by Orlandi et al. (2015) cover Reynolds numbers from
the laminar regime into the turbulent regime, and the highest Reynolds numbers
are among the highest values achieved so far in DNS. Therefore they present an
ideal platform for examining Reynolds number effects using a self-consistent data
base. Orlandi et al. also offer an evaluation of the effects of boundary conditions
by comparing Poiseuille flow and Couette flow. Most previous studies have focused
on plane Poiseuille flow (for some recent examples, see Jiménez & Hoyas 2008 and
Lozano-Durán & Jiménez 2014), and plane Couette flows have not been as widely
studied, probably because they are difficult to reproduce experimentally. Orlandi et al.
make a persuasive case that Couette flow can help to elucidate the effects of Reynolds
number, especially for inner/outer interactions, because its core flow is quite different
from that of Poiseuille flow. Given that DNS is supplanting low-Reynolds-number
experiments, at least for fundamental studies such as this one, the lack of experimental
validation is perhaps not such a pressing concern as it used to be. That is, a detailed
study of plane Couette flow is overdue, and the present contribution is therefore very
welcome.

A particularly important aspect of these wide-ranging computations is that they were
performed with a consistent numerical method; Reynolds number effects are generally
rather subtle, and so it is important to understand the effects of spatial resolution,
domain size, and time evolution. The authors are very aware of these issues, and
so comparisons across Reynolds numbers and boundary conditions can be made with
confidence.

Transition in both flows appears as a sharp jump in wall friction and bulk turbulent
kinetic energy, that is, the kinetic energy associated with the turbulent velocity
fluctuations, integrated over the bulk flow. Interestingly, for the same bulk velocity,
the Couette flow has a 23 % lower skin friction in the turbulent regime compared
to Poiseuille flow. When the skin friction and the Reynolds number are scaled on
the centreline velocity rather than the bulk velocity, however, the two flows show
good collapse, and they also agree well with pipe flow data, which is an original and
provocative result.
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As to the turbulent mean velocity profile, the authors do not find a convincing
region of logarithmic variation for either flow, which is in accord with similar studies
of channel and pipe flow. Nevertheless, the two flows show some level of similarity in
that the Couette flow follows an evolution with Reynolds number similar to that of the
Poiseuille flow, except that it appears to be shifted towards a higher Reynolds number.
This trend is also seen in the Reynolds stress behaviour, suggesting that Reynolds
number effects are generally more significant in Couette flow compared to Poiseuille
flow.

At a sufficiently high Reynolds number, Townsend’s attached eddy hypothesis
suggests that the streamwise and spanwise stresses should display a logarithmic
variation in the overlap region. Experiments have revealed this behaviour for the
streamwise turbulence intensity when Reτ > 10 000 (Hultmark et al. 2012; Marusic
et al. 2013). This behaviour is not seen here for the streamwise component in Couette
flow, but a short region is found for Poiseuille flow at the highest Reynolds number.
What is particularly interesting, however, is that the authors find a convincing region
of logarithmic variation in the spanwise component, something that was seen only in
a nascent sense at lower Reynolds numbers (Jiménez & Hoyas 2008). The Couette
flow shows a larger region of fit, consistent with a faster evolution with Reynolds
number. There is a lack of experimental data on the spanwise component (it is rather
difficult to measure), and so the numerical results are especially valuable here.

The behaviour of the streamwise turbulence intensity is important in at least two
respects. First, the peak in u′2

+
(= u′2/u2

τ ) in the near-wall region is a measure of
the inner/outer interaction: a peak that is invariant in inner units (in location and
magnitude) would signal little or no effect of the outer scale turbulence on the
near-wall region. The results given here show that the peak in u′2

+ is a relatively
weak function of Reτ : the mean square peak in Couette flow varies with log Reτ
approximately with a slope of 0.86, while for Poiseuille flow it has a smaller slope
of about 0.5. Second, u′ 2

+ plays an important in the production of turbulent kinetic
energy, in that the production takes place in the streamwise component and it is then
redistributed by pressure fluctuations to the other two components. In this respect, the
results shown in Orlandi et al. indicate that the production in the wall region (y+<50)
for both flows is almost entirely independent of Reynolds number for Reτ > 180. The
outer limit for similarity increases with Reynolds number, and according to the
present author is estimated to be fixed at y/h ≈ 0.15. The premultiplied production
indicates a very different distribution of the contributions to the production; since,
in Couette flow, the flow is not symmetric about the centreline, there is significant
energy production in the bulk flow, leading to the formation of strong streamwise
structures, something that is absent in Poiseuille flow.

3. Future

Orlandi et al. compare Couette flows with Poiseuille flows over a wide range of
Reynolds numbers, and identify many similarities between the two flows, particularly
in terms of the abrupt transition behaviour, the skin friction behaviour, and the near
Reynolds number independence of the mean velocity, kinetic energy production, and
turbulent viscosity in the near-wall region. The differences are also striking: it is clear
that in terms of the turbulent stresses Couette flow shows a stronger Reynolds number
dependence than Poiseuille flows, and Couette flow appears to reach a high-Reynolds-
number state more quickly than Poiseuille flow while sharing the same general trends.

Given that these new DNS data from Couette flow are so useful, a case could
be made for examining other canonical flows in more detail using DNS, and
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moving beyond plane Poiseuille flow. For pipe flow, for example, there are numerous
experimental data sets available but very few simulations (a notable exception being
Wu, Baltzer & Adrian 2012). Couette flows with pressure gradients might also be
a logical step, especially since the pressure gradient can be controlled in a way
that is not possible in Poiseuille flow. Earlier work by the same authors provides a
ready-made platform for this venture (Orlandi, Bernardini & Pirozzoli 2011).

A particularly provocative result from Orlandi et al. is that the slope of the
logarithmic stress variations is the same for u′2

+ and w′2
+ , and an argument is

made that they are the same in Poiseuille and Couette flows. The value found here,
however, is 0.386, which is smaller than the value of 0.5 found for w′2

+ by Jiménez
& Hoyas (2008), and very much smaller than the value of 1.25 found for u′2

+ in
high-Reynolds-number boundary layer and pipe flows (Marusic et al. 2013), which
raises some interesting questions on the evolution of this slope with Reynolds number,
and/or flow geometry, and also the fitting range used to find the slope. In addition, the
peak in u′2

+ in Poiseuille flow varies with log Reτ approximately with a slope of 0.5,
whereas Lozano-Durán & Jiménez (2014) found a slope of 0.642 for nominally
the same Poiseuille flow. This comparison raises a larger question, namely the
apparent difficulty of determining this peak. Experiments and computations disagree
considerably on its variation with Reynolds number, and how flow-dependent it may
be. It would seem that, given the important role of u′2

+ in the production of turbulent
kinetic energy, and as a measure on the level of inner/outer interaction, we need to
resolve its behaviour with more certainty in future work.

The work by Orlandi et al. also raises some new questions that perhaps can
only be answered by analysis. For example, it is apparent that the spanwise
component exhibits logarithmic variation at a considerably lower Reynolds number
than the streamwise component. Why should this be so, and how does it impact
our understanding of the attached eddy hypothesis? Also, Orlandi et al. show that
the mean velocity variations in the core of Couette and Poiseuille flow appear to be
described well by a linear and parabolic profile, respectively. Again, why should this
be so, and does this behaviour also happen in pipe flow? What are the implications for
wake formulations? We look forward to seeing further work in this fascinating field.
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