Skip to main content Accessibility help
×
Home

Analyses of external and global intermittency in the logarithmic layer of Ekman flow

  • Cedrick Ansorge (a1) and Juan Pedro Mellado (a1)

Abstract

Existence of non-turbulent flow patches in the vicinity of the wall of a turbulent flow is known as global intermittency. Global intermittency challenges the conventional statistics approach when describing turbulence in the inner layer and calls for the use of conditional statistics. We extend the vorticity-based conditioning of a flow to turbulent and non-turbulent sub-volumes by a high-pass filter operation. This modified method consistently detects non-turbulent flow patches in the outer and inner layers for stratifications ranging from the neutral limit to extreme stability, where the flow is close to a complete laminarization. When applying this conditioning method to direct numerical simulation data of stably stratified Ekman flow, we find the following. First, external intermittency has a strong effect on the logarithmic law for the mean velocity in Ekman flow under neutral stratification. If instead of the full field, only turbulent sub-volumes are considered, the data fit an idealized logarithmic velocity profile much better; in particular, a problematic dip in the von Kármán measure $\unicode[STIX]{x1D705}$ in the surface layer is decreased by approximately 50 % and our data only support the reduced range $0.41\lesssim \unicode[STIX]{x1D705}\lesssim 0.43$ . Second, order-one changes in turbulent quantities under strong stratification can be explained by a modulation of the turbulent volume fraction rather than by a structural change of individual turbulence events; within the turbulent fraction of the flow, the character of individual turbulence events measured in terms of turbulence dissipation rate or variance of velocity fluctuations is similar to that under neutral stratification.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Analyses of external and global intermittency in the logarithmic layer of Ekman flow
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Analyses of external and global intermittency in the logarithmic layer of Ekman flow
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Analyses of external and global intermittency in the logarithmic layer of Ekman flow
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: cedrick@posteo.de

References

Hide All
Acevedo, O. C. & Fitzjarrald, D. R. 2003 In the core of the night-effects of intermittent mixing on a horizontally heterogeneous surface. Boundary-Layer Meteorol. 106 (1), 133.
Adrian, R. J. 1977 On the role of conditional averages in turbulence theory. Turbulence in Liquids. (ed. Zakin, J. L. & Patterson, G. K.), pp. 323332. Princeton.
Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301,1–16.
Ansorge, C. & Mellado, J. P. 2014 Global intermittency and collapsing turbulence in the stratified planetary boundary layer. Boundary-Layer Meteorol. 153 (1), 89116.
Antonia, R. A. 1981 Conditional sampling in turbulence measurement. Annu. Rev. Fluid Mech. 13, 131156.
Armenio, V. & Sarkar, S. 2002 An investigation of stably stratified turbulent channel flow using large-eddy simulation. J. Fluid Mech. 459, 142.
Barthlott, C., Drobinski, P., Fesquet, C., Dubos, T. & Pietras, C. 2007 Long-term study of coherent structures in the atmospheric surface layer. Boundary-Layer Meteorol. 125 (1), 124.
Bisset, D. K., Hunt, J. C. R. & Rogers, M. M. 2002 The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383410.
Brethouwer, G., Duguet, Y. & Schlatter, P. 2012 Turbulent–laminar coexistence in wall flows with Coriolis, buoyancy or Lorentz forces. J. Fluid Mech. 704, 137172.
Cava, D., Katul, G. G. & Molini, A. 2012 The role of surface characteristics on intermittency and zero-crossing properties of atmospheric turbulence. J. Geophys. Res. 117, 117.
Chung, D. & Matheou, G. 2012 Direct numerical simulation of stationary homogeneous stratified sheared turbulence. J. Fluid Mech. 696, 434467.
Coleman, G. N., Ferziger, J. H. & Spalart, P. R. 1990 A numerical study of the turbulent ekman layer. J. Fluid Mech. 213, 313348.
Corrsin, S.1943 Investigations in an axially symmetrical heated jet of air. Rep. WR W-94. National Advisory Committee for Aeronautics, Washington, DC.
Corrsin, S. & Kistler, A. L.1955 Free-stream boundaries of turbulent flows. Tech. Rep. TR1244-3133. John Hopkins University, Washington DC.
Deusebio, E., Caulfied, C. P. & Taylor, J. R. 2015 The intermittency boundary in plane Couette flow. J. Fluid Mech. 781, 298329.
Deusebio, E., Brethouwer, G., Schlatter, P. & Lindborg, E. 2014 A numerical study of the unstratified and stratified Ekman layer. J. Fluid Mech. 755, 672704.
Di Prima, R. C. & Swinney, H. L. 1981 Instabilities and transition in flow between concentric rotating cylinders. In Hydrodynamic Instabilities and the Transition to Turbulence (ed. Swinney, H. L. & Gollub, J. P.), Springer.
Donda, J. M. M., van Hooijdonk, I. G. S., Moene, A. F., Jonker, H. J. J., van Heijst, G. J. F., Clercx, H. J. H. & van de Wiel, B. J. H. 2015 Collapse of turbulence in stably stratified channel flow: a transient phenomenon. Q. J. R. Meteorol. Soc. 141 (691), 21372147.
Drazin, P. G. & Howard, L. N. 1966 Hydrodynamic Stability of Parallel flow of Inviscid Fluid, Advances in Applied Mathematics, vol. 9. Elsevier.
Fernando, H. J. S. 1991 Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech. 23, 455493.
Flores, O. & Riley, J. J. 2011 Analysis of turbulence colapse in the stably stratified surface layer using direct numerical simulation. Boundary-Layer Meteorol. 139 (2), 241259.
García-Villalba, M. & del Álamo, J. C. 2011 Turbulence modification by stable stratification in channel flow. Phys. Fluids 23 (4), 045104.
van Hooijdonk, I. G. S., Donda, J. M. M., Clercx, H. J. H., Bosveld, F. C. & van de Wiel, B. J. H. 2015 Shear capacity as prognostic for nocturnal boundary layer regimes. J. Atmos. Sci. 72 (4), 15181532.
von Kármán, T. 1930 Mechanische Ähnlichkeit und Turbulenz. Nachr. Ges. Wiss. Göttingen, Mathematisch-Physikalische Klasse Band 1924, 5876.
Kolmogorov, A. N. 1941 Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 434 (1890), 1517.
Kovasznay, L. S. G., Kibens, V. & Blackwelder, R. F. 1970 Large-scale motion in the intermittent region of a turbulent boundary layer. J. Fluid Mech. 41 (2), 283325.
Kuznetsov, V. R., Praskovsky, A. A. & Sabelnikov, V. A. 1992 Fine-scale turbulence structure of intermittent hear flows. J. Fluid Mech. 243, 595622.
Mahrt, L. 1999 Stratified atmospheric boundary layers. Boundary-Layer Meteorol. 90 (3), 375396.
Mahrt, L. 2014 Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech. 46, 2345.
Mellado, J.-P., Wang, L. & Peters, N. 2009 Gradient trajectory analysis of a scalar field with external intermittency. J. Fluid Mech. 626, 333365.
Mironov, D. & Fedorovich, E. 2010 On the limiting effect of the Earth’s rotation on the depth of a stably stratified boundary layer. Q. J. R. Meteorol. Soc. 136 (651), 14731480.
Phillips, O. M. 1955 The irrotational motion outside a free turbulent boundary. Proc. Camb. Phil. Soc. 51 (01), 220229.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Prandtl, L. 1961 Zur turbulenten strömung in rohren und längs platten. In Ludwig Prandtl Gesammelte Abhandlungen (ed. Tollmien, W., Schlichting, H., Görtler, H. & Riegels, F. W.), pp. 632648. Springer.
Ruscher, P. & Mahrt, L. 1989 Coherent structures in the very stable atmospheric boundary layer. In Boundary Layer Studies and Applications, pp. 4154. Springer.
Salmond, J. A. 2005 Wavelet analysis of intermittent turbulence in a very stable nocturnal boundary layer: implications for the vertical mixing of ozone. Boundary-Layer Meteorol. 114 (3), 463488.
Sandu, I., Beljaars, A. C. M., Bechtold, P., Mauritsen, T. & Balsamo, G. 2013 Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? J. Adv. Modeling Earth Syst. 5 (2), 117133.
Shah, S. K. & Bou-Zeid, E. 2014a Very-large-scale motions in the atmospheric boundary layer educed by snapshot proper orthogonal decomposition. Boundary-Layer Meteorol. 153, 355387.
Shah, S. K. & Bou-Zeid, E. 2014b Direct numerical simulations of turbulent Ekman layers with increasing static stability: modifications to the bulk structure and second-order statistics. J. Fluid Mech. 760, 494539.
Shapiro, A. & Fedorovich, E. 2010 Analytical description of a nocturnal low-level jet. Q. J. R. Meteorol. Soc. 136, 12551262.
da Silva, C. B., Hunt, J. C. R. & Eames, I. 2014 Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46, 567590.
Spalart, P. R., Coleman, G. N. & Johnstone, R. 2008 Direct numerical simulation of the Ekman layer: a step in Reynolds number, and cautious support for a log law with a shifted origin (Retracted article See 21 art. no. 109901, 2009). Phys. Fluids 20 (10), 101507.
Spalart, P. R., Coleman, G. N. & Johnstone, R. 2009 Retraction: ‘direct numerical simulation of the Ekman layer: a step in Reynolds number, and cautious support for a log law with a shifted origin’ (Phys. Fluids 20, 101507 (2008)). Phys. Fluids 21 (10), 109901.
Steeneveld, G.-J. 2014 Current challenges in understanding and forecasting stable boundary layers over land and ice. Frontiers Environ. Sci. 2, 16.
Sun, J., Lenschow, D. H., Burns, S. P., Banta, R. M., Newsom, R. K., Coulter, R., Frasier, S., Ince, T., Nappo, C. J. & Balsley, B. B. 2004 Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Boundary-Layer Meteorol. 110 (2), 255279.
Sun, J., Mahrt, L., Banta, R. M. & Pichugina, Y. L. 2012 Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci. 69 (1), 338351.
Sutherland, B. R. 2010 Internal Gravity Waves, 1st edn. Cambridge University Press.
Townsend, A. A. 1948 Local isotropy in the turbulent wake of a cylinder. Austral. J. Sci. Res. A 1 (2), 161174.
Townsend, A. A. 1949 The fully developed wake of a circular cylinder. Austral. J. Chem. 2, 451468.
Tsinober, A. 2014 The Essence of Turbulence as a Physical Phenomenon. Springer.
Westerweel, J., Fukushima, C., Pedersen, J. M. & Hunt, J. C. R. 2005 Mechanics of the turbulent-nonturbulent interface of a jet. Phys. Rev. Lett. 95, 174501,1–4.
van de Wiel, B. J. H. & Moene, A. F. 2012 The cessation of continuous turbulence as precursor of the very stable nocturnal boundary layer. J. Atmos. Sci. 69, 30973115.
van de Wiel, B. J. H., Moene, A. F., Jonker, H. J. J., Baas, P., Basu, S., Donda, J. M. M., Sun, J. & Holtslag, A. A. M. 2012 The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. J. Atmos. Sci. 69 (11), 31163127.
Zanoun, E. S., Durst, F. & Nagib, H. 2003 Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows. Phys. Fluids 15 (10), 30793089.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Analyses of external and global intermittency in the logarithmic layer of Ekman flow

  • Cedrick Ansorge (a1) and Juan Pedro Mellado (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed