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Existence of non-turbulent flow patches in the vicinity of the wall of a turbulent flow
is known as global intermittency. Global intermittency challenges the conventional
statistics approach when describing turbulence in the inner layer and calls for the
use of conditional statistics. We extend the vorticity-based conditioning of a flow to
turbulent and non-turbulent sub-volumes by a high-pass filter operation. This modified
method consistently detects non-turbulent flow patches in the outer and inner layers
for stratifications ranging from the neutral limit to extreme stability, where the flow
is close to a complete laminarization. When applying this conditioning method to
direct numerical simulation data of stably stratified Ekman flow, we find the following.
First, external intermittency has a strong effect on the logarithmic law for the mean
velocity in Ekman flow under neutral stratification. If instead of the full field, only
turbulent sub-volumes are considered, the data fit an idealized logarithmic velocity
profile much better; in particular, a problematic dip in the von Kármán measure κ
in the surface layer is decreased by approximately 50 % and our data only support
the reduced range 0.41 . κ . 0.43. Second, order-one changes in turbulent quantities
under strong stratification can be explained by a modulation of the turbulent volume
fraction rather than by a structural change of individual turbulence events; within the
turbulent fraction of the flow, the character of individual turbulence events measured
in terms of turbulence dissipation rate or variance of velocity fluctuations is similar
to that under neutral stratification.

Key words: intermittency, meteorology, stratified flows

1. Introduction
External turbulent boundary layers are characterized by external intermittency,

i.e. a significant volume fraction of the boundary layer’s outer region may actually
be non-turbulent. When such a flow is exposed to stable density stratification, this
external intermittency may become global in the sense that it locally extends down
to the inner layer. Such spatially and temporally localized absence of turbulence
is a well-recognized feature of stably stratified flows, in particular of the stably
stratified boundary layer in the atmosphere (van de Wiel et al. 2012; Sandu et al.
2013; Ansorge & Mellado 2014; Mahrt 2014; Donda et al. 2015). The transition
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612 C. Ansorge and J. P. Mellado

of non-turbulent flow to a turbulent state is subject to the field of hydrodynamic
instability, and there exists a well-developed conceptual framework to ascertain
whether a laminar flow exposed to a density stratification can become turbulent when
perturbed: Taylor–Goldstein stability analysis and the Miles–Howard theorem (Drazin
& Howard 1966; Di Prima & Swinney 1981; Fernando 1991) correctly describe
both the relative stability of a particular flow and its path to turbulence. A similar
framework to determine whether a turbulent flow exposed to a density stratification
re-laminarizes is still missing, and the analysis of turbulence in the very stable
boundary layer remains challenging (Steeneveld 2014; Mahrt 2014).

The coexistence of locally laminar and locally turbulent flow in a single configu-
ration is already mentioned by Corrsin (1943). He describes the segregation of
a turbulent jet into two disjoint sub-volumes with fully developed turbulence
and nearly laminar flow. This concept was termed intermittency and formally
introduced by Townsend (1948) in an attempt to generalize Kolmogorov’s theory
on isotropic turbulence (Kolmogorov 1941, K41), and to apply K41 to a statistically
inhomogeneous flow. (In the present work intermittency refers to the concept of
external intermittency not to be confused with internal intermittency (cf. Tsinober
2014).) Townsend (1948) postulates that regions of fully developed turbulence exist
for a sufficiently long period of time to allow for the establishment of local isotropy
inside them. Taking into account a non-zero intermittency fraction, experimental data
agree better with the prediction of K41. We follow Townsend’s notation, and denote
by γ the volume fraction occupied by the turbulent flow: this reduces to a fraction
of time in the case of a turbulence time signal and to a fraction of area in the case
of a statistically homogeneous plane.

Using an advanced method to determine the intermittency factor in a boundary
layer (based on high-frequency velocity oscillations; cf. Townsend (1949)), Corrsin
& Kistler (1955) provide physical reasoning and experimental evidence for the
hypothesis that the interface between turbulent and non-turbulent motion is one
between rotational and irrotational flow. In particular, they show that the root mean
square of the vorticity varies by orders of magnitude across this interface. These
seminal works provided the ground for extensive studies of turbulent/non-turbulent
interfaces and the use of conditional averaging techniques (Kovasznay, Kibens &
Blackwelder 1970; Antonia 1981; da Silva, Hunt & Eames 2014).

The aforementioned studies are concerned with the case where non-turbulent flow
exists aloft or around some region of turbulent motion. Another variant occurs when
stabilizing body forces act on a flow and cause the decay, cessation or absence of
turbulence. In stratified channels, re-laminarization was shown not to occur as an
on–off process in time but rather as a complex transition from a turbulent to a
non-turbulent state (Armenio & Sarkar 2002; Flores & Riley 2011; García-Villalba
& del Álamo 2011; Donda et al. 2015). When stratification increases gradually,
the transition begins with the localized absence of turbulent eddies in an otherwise
turbulent flow. Brethouwer, Duguet & Schlatter (2012) demonstrate a similar nature
of transition for several wall-bounded flows with different stabilizing body forces.

A particular case of such flows is stratified Ekman flow where static stability acts
on top of the stabilizing effect of rotation (Mironov & Fedorovich 2010). Turbulent
Ekman flow is the limit of the planetary boundary layer over a homogeneous
smooth surface with a constant geostrophic forcing. The laminarization of turbulent
Ekman flow under strong stratification is studied by Ansorge & Mellado (2014) and
Deusebio et al. (2014), and it is similar to that in the above-mentioned channel flows.
Further, the localized absence of turbulence in Ekman and channel flows bears a
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Analyses of external and global intermittency in Ekman flow 613

striking resemblance to the absence of turbulence on some or all scales, even close
to the wall, observed in the atmosphere and termed global intermittency by Mahrt
(1999). Hence, improved understanding of the dynamics of turbulence cessation and
global intermittency in Ekman flow is of immediate relevance for the parameterization
of turbulence in large-eddy simulations and global circulation models of the Earth’s
atmosphere – a pertinent challenge in modelling the planetary boundary layer (Sandu
et al. 2013; Steeneveld 2014). In the present work, the problem is approached from a
conditional statistics perspective (cf. Adrian 1977). This has previously been attempted
with regards to observations in the planetary boundary layer (Ruscher & Mahrt 1989;
Salmond 2005; Barthlott et al. 2007). To the authors’ knowledge, occurrence of
global intermittency in atmospheric configurations has, however, not yet resulted in
an application of the conditioning methods to study separately the turbulent and
non-turbulent sub-volumes of a rotating and stratified boundary layer.

The challenge is twofold: first, small-scale derivatives have to be measured with
sufficient accuracy to determine a vorticity-based intermittency factor γ (Kuznetsov,
Praskovsky & Sabelnikov 1992). Despite advances in measurement techniques,
still approximate methods are commonly employed to determine intermittency
factors (Westerweel et al. 2005; Cava, Katul & Molini 2012). Regarding numerical
simulations, sufficiently resolved data in space and time became available just recently:
for the neutrally stratified case of Ekman flow, Ansorge & Mellado (2014) provide
high-resolution data in a domain large enough to study the large-scale dynamics
associated with turbulence breakdown (cf. Shah & Bou-Zeid 2014b). Through more
recent simulations (introduced in § 2 and discussed in § 3), data for stratified cases at
higher Reynolds number became available and are discussed here.

The second challenge is related to the occurrence of global intermittency close to
the wall. While a vorticity-based partitioning of the flow detects external intermittency
in the outer layer of neutrally stratified flows, there are problems in cases with global
intermittency close to the wall. There, large gradients in non-turbulent regions may
falsely indicate the existence of turbulence. To overcome this second challenge, we
propose here an analysis of the flow combining the intermittency factor with a
high-pass filter operation (§ 4). Such a combination of a high-pass filter operation
and a vorticity-based intermittency conditioning constitutes a generalization of
the conditioning method to problems where turbulence (despite intense shear) is
suppressed by a strong-enough body force. The new partitioning method is applied
to study separately the turbulent and non-turbulent regions in neutrally and stably
stratified Ekman flow.

2. Problem formulation

The set-up here is similar to that introduced by Coleman, Ferziger & Spalart
(1990), cf. Ansorge & Mellado (2014): governing flow equations are solved under
the Boussinesq approximation and boundary conditions correspond to an Ekman flow
over a smooth wall and with a fixed temperature difference between the wall and
the free stream. Parameters of this set-up are the geostrophic wind velocity G, the
fluid kinematic viscosity ν, the Coriolis parameter f and the buoyancy difference B0

between the wall and free stream. We let G≡ |G| and align the coordinate direction
Ox with G. The two dimensionless groups

Re≡Gδ/ν and RiB ≡ B0δ/G2, (2.1a,b)
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614 C. Ansorge and J. P. Mellado

Name re_low ri00 ri15 ri31 ri62

Re(δneutral) 7725 26 450 26 450 26 450 26 450
δ+(tanalysis) 487 1400 1370 1180 765
RiB 0 0 0.15 0.31 0.62
IC case n/a n/a ri00 ri00 ri15
tstart n/a n/a 0.0 0.0 1.65
tend n/a n/a 1.65 0.5 2.2
tanalysis n/a n/a 1.5 0.25 1.65+ 0.45' 2.1
Grid A B B B B

TABLE 1. Simulations used in this work. The row ‘IC case’ lists the case from which
the flow fields of a simulation are initialized. The neutrally stratified case is initialized
by a broadband perturbation of a purely laminar case; the buoyancy profiles for the two
stratified cases initialized with ri00 are an error function matching the desired RiB as
described in Ansorge & Mellado (2014). For case ri62, the buoyancy field from case ri15
is multiplied by four. tstart is the time in inertial periods over which the initial condition
of the flow is exposed to stable stratification. tend − tstart is the duration of the simulation.
The row tanalysis lists the time at which snapshots in time for later analysis are taken. The
computational grids have 2048×2048×192 (A), respectively 3072×6144×512 (B) points
in the streamwise (Ox), spanwise (Oy) and vertical (Oz) directions.

a Reynolds and a Richardson number, govern the flow evolution in time. Heights are
normalized by δ and ν/u? such that

z− ≡ z/δ and z+ ≡ zu?/ν. (2.2a,b)

Similarly, t− = tf /2π; f is the angular frequency of the inertial oscillation. Here,
δ ≡ u?/f is a measure of the boundary-layer height under neutral conditions, u?
being the corresponding friction velocity. In terms of δ95, the height at which the
total stress is reduced to 5 % of the wall shear stress, we measure δ/δ95 ≈ 1.6 under
neutral stratification; under stable stratification, the boundary layer, however defined,
is shallower and this ratio increases. Note, however, that RiB is defined in terms
of the friction velocity u? under neutral conditions. The reason for this choice is
that we also investigate transient regimes to show the robustness of the conditioning
method presented in this paper. For such transient cases, the value of u∗ for neutral
conditions at the same Reynolds number proves convenient to compare among
different stratification conditions. As the buoyancy scale under stratified conditions,
we use b? defined through the surface buoyancy flux

u?b? = ν∂zB|z=0. (2.3)

In the present work, the neutrally stratified simulation at Re= 26 450 from Ansorge
& Mellado (2014) (there, the Reynolds number is defined in terms of the laminar
boundary-layer depth, and their case N1000L is referred to as ri00 throughout this
work) is complemented by three stratified cases (ri15, ri31, ri62) in different
stability regimes at the same Reynolds number (table 1). The horizontal domain size
expressed in parameters of the neutral reference is 20.4 × 20.4 δ2 or approximately
30 000 × 30 000(ν/u?)2 for the cases at Re = 26 450. The initial condition used for
the cases ri15 and ri31 is a realization of the neutrally stratified case ri00, and
the buoyancy profile is prescribed by an error function in the wall-normal direction.
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Analyses of external and global intermittency in Ekman flow 615

The strongly stratified case ri62 uses the final state of case ri15 as initial condition
with the buoyancy field multiplied by four. This particular choice of initial condition
creates a boundary layer with a realistic buoyancy profile resulting from a turbulent
simulation.

3. Flow synopsis
In this section, a brief account of the main physical features observed in the

newly conducted simulations is given. For a comprehensive review of the flow in its
different stability regimes, see Ansorge & Mellado (2014), Deusebio et al. (2014)
and Shah & Bou-Zeid (2014b). The three stratified configurations considered in this
work (summarized in table 1) can be attributed to the three stability regimes of weak
(ri15), intermediate (ri31) and strong (ri62) stratification by means of their bulk
evolution (cf. Ansorge & Mellado 2014).

In the weakly stratified case ri15, buoyancy acts as a small perturbation of
the flow, and, as such, behaves similar to a passive scalar. Initially, the buoyancy
perturbation concentrates in the viscous sub-layer and is passively diffused. Then, after
t−= 0.1, it is mixed in the turbulent boundary layer (figure 1a). Beyond t−≈ 1, when
the stratified layer reaches the externally intermittent layer and locally approaches
the free stream, an entraining layer characterized by high scalar variance develops
(around z− ≈ 0.3 − 0.6, not shown). Within this weak stratification regime, the
equilibrium velocity profile of the mean flow changes slightly with respect to neutral
stratification, and an inertial oscillation of relatively small amplitude occurs (figure 1d).
While the turbulence intensity is reduced in the outer layer and the boundary-layer
thickness reduces (figure 1b), the turbulence intensity in the inner layer and integrated
over the whole flow are only marginally affected, and they recover on a time scale
of the order of the period of the inertial oscillation (figure 1b,c).

Qualitatively, this picture is similar for the stratified case ri31, but figure 1(c)
shows a reduction of turbulence quantities (streamwise and vertical component of
vorticity and turbulent fluctuation velocity) of approximately 50 %. This corresponds
to a 75 % reduction in the turbulence kinetic energy (TKE). As will be seen later, this
stronger reduction makes the difference between a flow which is turbulent throughout
(as in case ri15) and a globally intermittent flow. Hence, case ri31 is attributed to
the intermediately stable regime.

In the very stable case ri62, which has been initialized from the final state of
case ri15 and thus with a background stratification covering the whole turbulent
layer, the turbulence source in the buffer layer is rapidly eliminated. This elimination
is indicated by the drastic decrease of 〈ww〉 near the wall (figure 1b) together with
the absence of turbulent motion throughout most of the near-wall region (figure 2b).
In the outer layer, a high-frequency oscillation becomes dominant in the buoyancy
flux (〈bw〉, figure 1a) and in the time series of TKE (〈uiui〉/2, figure 1c) and the
root mean square of streamwise vorticity (Ωx, figure 1c). This oscillation reflects an
exchange between potential energy of eddies and kinetic energy of eddies. The initial
energy for this oscillation is made available via the sudden increase of stratification
imposed by a multiplication of the buoyancy profile from case ri15 to generate the
initial condition for the case ri62. If the initial condition from the case ri62 has
a laminar buoyancy field with a negligible gradient in the outer layer, such that no
potential energy of perturbations is present (as in Ansorge & Mellado 2014), this
oscillation does not occur.

Despite its vigorous nature, this oscillation under strong stratification (case ri62)
does not create three-dimensional small-scale turbulence, as inferred from the contrast
between Ωz and Ωx (figure 1c). In the case studied here, the time signal in Ωx is
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FIGURE 1. (Colour online) (a) Contour plot of 〈bw〉. (b) Contour plot of
√〈ww〉,

(c) Square root of domain-integrated TKE (
√

E), domain-integrated root mean square of
the streamwise component of vorticity Ωx, and domain-integrated root mean square of
the wall-normal component of vorticity Ωz, normalized by the corresponding values from
case ri00. (d) Hodographs at the time instants marked by vertical lines in (c). The thin
solid lines show the time evolution of (〈u〉, 〈w〉) at a fixed height; they progress forward
in time illustrating the inertial oscillation and connect the hodographs at the fixed height
marked by the labels. The time axis in (a–c) changes scale at t− ≈ 1.6, i.e. when the
stratification is increased from ri15 to ri62, to better illustrate high-frequency variability.
Lines in blue colours in (c) and (d) correspond to case ri15, and thereafter to case ri62
(red/yellow colours); (c) also shows case ri31 in green colours.

governed by the high-frequency oscillation, whereas Ωz is close to zero and does not
exhibit an oscillation of similar magnitude. In fact, figure 1(c) indicates the absence of
an effective return-to-isotropy term (the return-to-isotropy terms works on time scales
of the order of the eddy-turnover time u?/δ= f−1, much longer than the period of this
oscillation of the order of N−1 ≡ 1/

√
∂zB). Further, this demonstrates the absence of

intense pancake vortices in this configuration – oftentimes hypothesized as a source
of vorticity under strong stratification (Mahrt 2014).

In summary, in the strongly stable case, the following processes at different scales
interact with each other: (i) the inertial oscillation, at a global scale and with an
angular frequency f , (ii) the buoyancy oscillation, with an angular frequency of the
order of the local buoyancy gradient N and (iii) the re-laminarization and recovery
of the turbulent flow influenced by the initial level of turbulence. In absence of
turbulence, (i) and (ii) are well understood (Shapiro & Fedorovich 2010). In the
presence of turbulence, such interaction remains an active topic of research (Mahrt
2014). Process (iii) poses an additional challenge to an analysis based on conventional
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(a) (b)

(c) (d )

(e) ( f )

9 10 11 12 13 14

FIGURE 2. Natural logarithm of vorticity modulus normalized by f at z− = 0.04 for
cases ri00 (a,b), ri15 (c,d) and ri62 (e, f ). (a), (c) and (e) Show the vorticity modulus
of the field u, (b), (d) and ( f ) of the field uhi. Only 1/6× 1/6 of the computational box
is shown.
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618 C. Ansorge and J. P. Mellado

statistics: a large portion of the flow is not turbulent and statistics may be strongly
influenced by the alternating mean between turbulent and non-turbulent sub-volumes
of the flow. As demonstrated in § 5, the study of statistics conditioned to the turbulent
and non-turbulent sub-volumes of the flow improves the understanding of dynamics
in the inner layer.

4. Decomposition of the flow
4.1. Partitioning of the flow into turbulent and non-turbulent sub-volumes

Vorticity is an appropriate and common discriminator between turbulent and
non-turbulent regions of a generally turbulent flow (da Silva et al. 2014). Hence,
following Pope (2000), we define the intermittency factor as

γ (z)≡ 〈H(ω−ω0)〉, (4.1)

where H is the Heaviside function, ω is the local vorticity magnitude and 〈·〉 denotes a
horizontal average. Defining the threshold ω0 for the turbulent/non-turbulent interface
is to some degree arbitrary. In many free flows, external intermittency is characterized
by very intense variations of the vorticity magnitude ω between the turbulent and
non-turbulent sub-volumes and this feature yields γ (z) quite insensitive to the choice
of ω0, at least in a certain range (Kovasznay et al. 1970; Bisset, Hunt & Rogers
2002; Mellado, Wang & Peters 2009). In Ekman flow, however, two features makes
the choice of a vorticity threshold delicate (figure 3a): first, the statistical stationarity
of the flow when compared to a growing boundary layer is different; in a growing
boundary layer the turbulent part of the flow gradually engrosses non-turbulent fluid.
Second, in Ekman flow there is an inviscid vortex-tilting mechanism (appendix A)
constituting a vorticity source aloft the turbulent layer. As shown in appendix A,
irrespective of Re, this vortex tilting is a fundamental mechanism in Ekman flow that
renders the outer, non-turbulent layer different from non-rotating external flows.

We choose here ω0 = ω̃, where

ω̃≡ 7ωrms(δ95), (4.2)

as reference vorticity for the turbulent/non-turbulent distinction for three reasons.
First, according to classical definitions of the boundary-layer height, such as δ95,
this level is at the verge of the part that is considered turbulent in a bulk sense.
Second, we observe the scaling 〈uiui〉 ∝ z−4 for 0.75. z−. 2 (not shown), which is a
signature of potential flow aloft a turbulent boundary layer (Phillips 1955). Third, the
resulting profile γ (z) (figure 3) is similar to that found in non-rotating boundary layers
(cf. Kovasznay et al. 1970).

While, as discussed above, this approach is well suited to distinguish the turbulent
and non-turbulent regions in the outer layer of a neutrally stratified Ekman flow,
the detection of global intermittency under stable stratification based on this method
is difficult: contributions of the mean-velocity gradient dominate the turbulence
contribution to the vorticity fluctuation close to the wall (Ansorge & Mellado 2014).
To overcome the problem of partitioning the flow within the inner layer, we consider
two horizontal high-pass filters of the velocity fields in Fourier space. For the first
one, we define

Fδ(kh)≡ 1
2

{
erf
[

ln
(

kh

kδ

)]
+ 1
}
, with kh ≡

√
k2

x + k2
y , (4.3)

where kx and ky are wavenumbers in the streamwise and spanwise directions and the
filter length scale is kδ ≡ 2π/δ. The filters F±

δ are then defined by the filter transfer
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FIGURE 3. Intermittency factor versus height for case ri00 varying the intermittency
threshold ω0 in the range ω̃/32 6ω0 6 3 ω̃ with ω̃ as defined in (4.2).

functions ±(Fδ − 0.5) + 0.5. That is, we consider the spectral decomposition of the
flow fields into

uhi ≡F+
δ {u} and ulo ≡F−

δ {u} = u− uhi. (4.4a,b)

As a second filter, we use the Reynolds decomposition where upper-case letters denote
averages and lower-case letters fluctuations.

4.2. Filtering and intermittency factors
The first statistical property that we consider in this analysis is vorticity because
of its pivotal role in defining turbulence intermittency (cf. da Silva et al. 2014). In
the neutrally stratified flow (case ri00), contributions from the high-pass filtered
field uhi dominate the root mean square of the vorticity fluctuations ωrms at all
heights (figure 4a). The vorticity root mean square residing in the low-pass filtered
field ulo is less than one-sixth of that contained in uhi. The same holds for the weakly
stratified case ri15, supporting further the aforementioned and well-established
similarity between the neutrally and weakly stratified flow regimes. When the
stratification increases further, i.e. in case ri31, the vorticity root mean square
in the high-pass filtered field begins to reduce while the contribution in the low-pass
filtered field only increases slightly.

When stratification is increased to RiB = 0.62 (case ri62), uhi contains much
lower vorticity root mean square, in particular close to the wall (z− < 0.2). There,
the vorticity root mean square is largely explained by the low-pass filter contribution.
Contributors to this vorticity root mean square are large-scale coherent motions. While
the flow as a whole is undoubtedly turbulent, locally it does not quite seem turbulent
in some regions (cf. figure 2c,e). This situation is not any different from that in
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FIGURE 4. (Colour online) Vertical profiles of the vorticity root mean square (a) and
TKE (b) of the unfiltered (thin solid), high-pass (thick, solid) and low-pass (thick dashed)
filtered fields for case ri00 (black), ri15 (blue), ri31 (red) and ri62 (orange).

a turbulent jet as considered in the works of Townsend, Corrsin & Kistler (Corrsin
1943; Townsend 1948, 1949; Corrsin & Kistler 1955). However, the standard indicator
function of turbulence – based on the vorticity of the flow field u (4.1) – does not
work here. We are in the unfortunate situation where external intermittency occurs in
the vicinity of the wall. Here, turbulent sub-volumes are not the only contributor to
vorticity but also the non-turbulent sub-volumes possess substantial vorticity, which
deems vorticity of the unfiltered field inappropriate to locally indicate small-scale
activity.

Profiles of TKE (figure 4b) also show the change from fluctuations dominated
by small-scale activity in the neutrally and weakly stratified cases to fluctuations
dominated by large-scale activity under strong stability. TKE, however, is more
sensitive than the vorticity to the strong buoyancy oscillation in case ri62. In
general, TKE is less sensitive than vorticity to the absence of small-scale turbulent
motion close to the wall. Therefore, we measure intermittency factors based on the
vorticity, and consider the filters introduced in this section.

With respect to the flow-partitioning method based on unfiltered fields, most
of the flow is turbulent, even in the strongly stable regime (figure 5). Owing to
the strong shear in the surface layer, this classical method of measuring external
intermittency fails to detect the localized absence of turbulence close to the wall
evident in figure 2(c,e). Further, it yields a higher turbulent area fraction (up
to z− ≈ 0.1 in figure 5) as compared to the neutral reference. When a Reynolds
decomposition is used, γ is reduced to approximately 0.5 in the buffer layer of the
strongly stable regime, but remains very close to unity in immediate vicinity of the
wall. A reduction of the turbulent area fraction by only 10 % in cases ri31 and
ri62 does not represent an appropriate measure of global intermittency, reflecting
the large-scale contribution to the vorticity root mean square in the inner layer
(cf. figure 2). If high-pass filtered fields are used to partition the flow, the localized
absence of turbulent motion in a vast part of the inner layer is correctly detected.
The utility of a spectral decomposition is visualized in figure 2: the logarithm of
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FIGURE 5. (Colour online) Intermittency factor γ with a threshold vorticity ω0 = ω̃
calculated from high-pass filtered field (thick solid: F+

δ ; thick dash–dotted: Reynolds’
decomposition) and unfiltered field (thin solid). Colours indicate the stratification as in
figure 4. The secondary vertical axis applies to the neutrally stratified case only.

normalized vorticity modulus reaches values of approximately 10 throughout the
domain, even in regions where there is no mixing activity (panel c). The high-pass
filter operation removes these contributions (panel d), and the vorticity modulus
is significantly reduced in regions with less small-scale mixing. At the same time,
for the neutrally stratified case, the consideration of filtered fields has no impact
on γ (z) above z+ ' 20 (figures 2a and 2b), and in figure 5 the three lines for the
Reynolds-averaged high-pass filtered and unfiltered fields collapse, with only a 5 %
deviation below the buffer region. Under stable stratification, a realistic reduction of
the intermittency factor in the vicinity of the wall can – among the options considered
here – only be achieved with the high-pass filter F+

δ (4.3).
Given the small variation of intermittency factors below z+' 20, one might consider

conditioning the whole boundary layer based on a two-dimensional partition map of
the buffer layer. This was considered here as an alternative to a three-dimensional
partitioning method. It turns out, however, that even within the inner layer the
vertical coherence of the turbulent/non-turbulent partitioning is not perfect. While the
following results qualitatively also hold for this easier approach to partitioning the
flow, our analyses showed that turbulence elements may reach into the non-turbulent
fraction, modifying in particular the statistics of the non-turbulent sub-volumes. This
is a consequence of the complex geometry of the turbulent/non-turbulent interface as
it may be inferred from figure 2. This contortion of the turbulent/non-turbulent
interface renders the observed tendencies much less clear when this simplified
two-dimensional partitioning method is employed. Another effect of a purely
two-dimensional partitioning method based on the buffer layer is that effects of
external intermittency in the statistics cannot be detected, since external intermittency
mainly impacts on a flow above the buffer layer.

In summary, the above introduction of a high-pass filter operation provides a
suitable generalization of the vorticity-based conditioning to flows where intermittency
occurs in regions with intense shear. We expect this method to work for the broad
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FIGURE 6. (Colour online) (a) Residual of the flux 〈bw〉 in the term combining large-scale
and small-scale motions as a fraction of the total flux. ε = 10−3B0G is used as a
regularization factor to avoid singularity when 〈bw〉 becomes very small. (b) Flux in
the raw field 〈bw〉, the high-pass filtered field 〈(bw)hi〉 and in the low-pass filtered field
〈(bw)lo〉 normalized by σbw := √〈bb〉〈ww〉. Colouring indicated in panel (a) is as in
previous figures. The second vertical axis (z−) is valid for neutral stratification only.

class of problems where body forces suppress turbulent motion in a region of
strong shear; particularly, this includes the global intermittency accompanying both
the re-laminarization of a turbulent flow and the recovery of a laminar flow to a
turbulent state. The capability to detect the absence of turbulent motion, also in the
vicinity of the wall, allows for a decomposition of the flow into disjoint turbulent and
non-turbulent sub-volumes. Hence, one may compute conditional statistics that do not
mix up effects of a decreased intensity of turbulence on the one hand, and a partial
re-laminarization of the flow on the other hand. This approach yields new insight into
the dynamics of Ekman flow, including aspects of the logarithmic law under neutral
stratification and the organization of patchy turbulence under very strong stratification,
as laid out in § 5.

4.3. Wave-like motions
Besides the above decomposition in physical space, the high-pass filter operation
establishes a spectral decomposition of the flow into large-scale wave-like motions
and small-scale mixing eddies. This allows us to quantify the effects of waves on
the statistics to a certain extent. In particular, under stable stratification, this aids the
understanding of small-scale processes whose footprint in the statistics may otherwise
be obscured by effects of waves or coherent large-scale motions.

A decomposition into turbulent and wavy modes is illustrated here by means of the
buoyancy flux. Neglecting contributions from the mixed terms, it is

〈bw〉 ' 〈blowlo〉 + 〈bhiwhi〉 (4.5)

within very small deviations (2 % within the boundary layer, 5 %–10 % around z= δ
where the flux is very small, figure 6a). In the inner layer of the neutrally and
weakly stratified cases, the buoyancy flux is entirely in the high-pass filtered
contribution, i.e. 〈bw〉 ' 〈bhiwhi〉 (figure 6b). There, the correlation between b and w
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is relatively large. Only in the non-turbulent region aloft the turbulent part of the
boundary layer do contributions in the large-scale signal matter. Here, the correlation
between b and w drops by one order of magnitude. Under strong stratification (case
ri62), the turbulence is extinguished, and nearly all the flux resides in large-scale
contributions. This flux is not governed by a turbulent process but rather by large-scale
wave activity and may change sign (while the viscous flux locally increases as a
consequence of the increased stratification that comes with a positive buoyancy flux),
as shown in figure 6(b). Hence, this flux is characterized by a very small – sometimes
even negative – correlation coefficient between b and w. In fact, the net transport∫ 〈bw〉 dt is very close to zero (not shown) in the non-turbulent region aloft the
turbulent part of the boundary layer. Such a small or no correlation between b and w
is a feature of wave motions, whereas turbulent motion is characterized by non-zero
correlation between b and w (Sutherland 2010). This behaviour of the correlation
coefficient between b and w suggests that the filter operation based on the length
scale δ – as anticipated above – constitutes a decomposition of the flow into wave
and turbulence modes.

5. Conditional statistics
5.1. External intermittency and the logarithmic law for Ekman flow

The logarithmic law is based on a similarity argument for the vertical gradient of
streamwise velocity in the surface layer which is often expressed as

∂U+

∂z+
= 1
κz+

(5.1a)

(cf. von Kármán 1930; Prandtl 1961; Zanoun, Durst & Nagib 2003). Given a velocity
profile, κ can be estimated as

κ̂diff = ∂ ln z+

∂U+
. (5.1b)

Such an estimation of κ poses challenges beyond the availability of data at only
moderate Reynolds number (Spalart, Coleman & Johnstone 2009). The main issue
when estimating κ directly is a strong decline from κ(z+ ' 50) ' 0.42 to κ ' 0.38
at the upper end of the logarithmic layer. Spalart, Coleman & Johnstone (2008)
proposed that a shifted origin for the logarithmic law yields a much better fit, but
rejected this hypothesis later (Spalart et al. 2009). A possible physical interpretation
of this dip is the effect of the super-geostrophic wind maximum in Ekman flow
located around z− ≈ 0.20 (Ansorge & Mellado 2014), which corresponds to z+ ≈ 300
for the Re achieved here. Another possible reason is that in this range of heights, the
flow is externally intermittent – a fundamental difference to channel flow for which
the law was originally derived. Within non-turbulent sub-volumes of the flow, the
application of a logarithmic law is not meaningful.

In a laboratory context, with regard to atmospheric measurements, and when
it comes to the parameterization of mean-velocity profiles, the integrated form of
equation (5.1a) is often more practical: integration of equation (5.1a) over z+ yields

U+ = 1
κ

ln z+ +A0, (5.2a)

and allows us to locally estimate κ as

κ̂int = ln z+

U+ −A0
. (5.2b)
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FIGURE 7. (Colour online) Deviation of the estimates for the von Kármán constant
based on its value at z− = 100 (cf. table 2). Estimates of κ̂int based on the integral
formulation (5.2a) are shown in black, estimates of κ̂diff based on the differential
formulation in red. Thick, dashed lines are based on averages conditioned to turbulent
patches (U|turb) and thin solid lines show conventional averages (U).

As a consequence of the integration, equation (5.2b) includes the additional unknown
parameter A0 representing the lower boundary condition for the logarithmic
layer. While A0 is a physically relevant and geometry-related parameter for the
mean-velocity profile, it is unrelated to the fundamental problem of determining the
von Kármán constant. We estimate here A0 together with κ from a least-square fit of
the velocity profiles versus the ideal logarithmic profile (5.2a). By construction, this
approach also yields an estimate for the optimal value of κ which is consistent with
the differential formulation (5.1a).

The flow-conditioning method introduced in § 4.1 allows us to account for the effect
of external intermittency on the logarithmic law by conditioning the mean velocity
profile to the turbulent sub-volumes. While we use here ω0= ω̃ (4.2) as the threshold
to discern turbulent and non-turbulent regions, in a qualitative way, the findings put
forward here hold when ω0 is varied in the range 1/8<ω0/ω̃ < 1. When considering
the conditioned profiles, both estimates for κ ((5.2b) and (5.1b)) vary less with height
in the region 50< z+< 200, as seen in figure 7. In particular, the problematic decline
of the estimate for κ̂diff is reduced by approximately 50 % when only the turbulent
fraction of the domain is considered. We propose hence the modified logarithmic law

U+turb =
1
κ

ln z+ +A0. (5.3)

Using the velocity conditioned to the turbulent regions of the flow, this formulation
takes into account effects of external intermittency in the logarithmic layer of the
flow. The considerable improvement of the estimator for the von Kármán constant,
κdiff , provides strong evidence that the failure to establish a plateau in κdiff (z+) is, at
least partly, an effect of the entrainment of non-turbulent fluid into the logarithmic
layer. As such, this effect is intrinsic to Ekman flow however high the Reynolds
number and, contrary to possible other mechanisms with impact on the logarithmic
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Interval A0(U) κ(U) A0(U|turb) κ(U|turb)

40 < z+ < 80 4.89 0.410 5.10 0.428
50 < z+ < 100 4.95 0.413 5.11 0.428
60 < z+ < 120 4.81 0.407 4.99 0.423
80 < z+ < 160 4.46 0.400 4.76 0.415

100 < z+ < 200 4.27 0.389 4.76 0.415
120 < z+ < 240 4.34 0.391 4.94 0.421

Spread 0.68 0.024 0.35 0.013

TABLE 2. Estimates from conventional and conditioned velocity profiles for A0 and κ
based on a least-squares fit. The fitted region varies according to the column ‘interval’.
The spread between the maximum and minimum value in the respective column is given
for convenience.

law at intermediate Reynolds numbers, cannot be expected to cede when Re is further
increased. (In fact, the shifted-origin hypothesis for the logarithmic law put forward
by Spalart et al. (2008) seems now again a lot more attractive than it appeared in
the light of the findings in Spalart et al. (2009).)

While actually a consequence of external intermittency, this modification can be
interpreted in analogy to a wake law, but it extends deep into the logarithmic layer.
When rewritten in terms of the actual velocity profile, i.e. including the non-turbulent
regions, our findings suggest the formulation

U+ = 1
κ

ln z+ +A0 + fext. int.(z−, z+), (5.4)

where fext. int. can be interpreted as a wake function representing the effect of external
intermittency and is exactly prescribed by the difference U+ − U|+turb of the average
wind speed in the conditioned and unconditioned fields. Similarity properties and the
exact dependency of the function fext. int. on the non-dimensional heights z− and z+
need to be identified.

With regards to absolute values of the parameters related to the logarithmic law, our
conventional mean-velocity profiles support values for κ in the range [0.389, 0.413]
– depending on the height range from which they are estimated (table 2). When the
non-turbulent patches are excluded from the field, the estimate of κ increases as a
consequence of the lower velocity U+|turb <U+ appearing in the denominator of the
estimators for κ . Along with an increasing effect of external intermittency, this impact
increases with height: the impact on κ of using the conditioned profile instead of the
conventional averages is a 2 % increase when estimated for 50< z+< 100, but already
a 6 % increase when estimated for 120< z+<240. When using the conditioned profile,
dependency of both A0 and κ on the height range from which they are estimated
decreases and the data only support the reduced range 0.41 . κ . 0.43 for the
von Kármán constant. We interpret this reduced uncertainty in κ as a consequence
considering an additional relevant physical mechanism in the logarithmic layer of the
flow.

5.2. Global intermittency in the surface layer of stratified Ekman flow
One might ask: how does the structure of turbulence change under stable stratification?
When considering the flow as a whole, the effect of stratification in the strongly stable
case is tremendous (cf. Ansorge & Mellado 2014). A way to quantify the impact of
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FIGURE 8. (Colour online) Streamwise (a) and spanwise (b) auto-correlation function of
the vertical component of velocity at three different heights in the buffer layer, surface
layer and outer layer of the turbulent flow. Shown are the four cases ri00, ri15, ri31
and ri62 with colouring as in previous figures. Different line strokes indicate different
heights above the surface as shown in the legend. The separations 1x and 1y are
normalized with the boundary-layer depth for the respective stratified case at the time
where the correlation is evaluated. Accounting for the symmetries of the horizontally
doubly periodic problem, the auto-correlation functions are only shown through half the
domain.

stratification on turbulent motion is through streamwise and spanwise auto-correlation
functions (figure 8). While a slight increase of stratification from Ri= 0 to Ri= 0.15
has only minor impact on the correlation, the strongly stratified cases ri31 and
ri62, exhibit dramatically increased correlations at various heights throughout the
boundary layer. The large-scale features, i.e. the global modes, also seen in the
correlations under neutral stratification at a similar length scale (around 1x− ≈ 2.5
and 1x− ≈ 5) become more prominent, illustrating the important role which such
coherent structures play in stratified Ekman flow. This persistence or even increasing
dominance of large-scale modes under stable stratification in the near-wall region is
also seen in a spectral analysis (not shown): the agreement of the length scale of
these large-scale modes in Ekman flow (≈5δ as inferred from the correlation plots
in figure 8) with that of the global modes under neutral stratification points to a link
between them. While the presence of such large-scale modes and their emergence
or persistence in stratified conditions (perhaps related to inertia–gravity waves) is a
well-known feature in the core region of channel flow (García-Villalba & del Álamo
2011) and the outer region of Ekman flow (Shah & Bou-Zeid 2014a), such modes
of motion were not described near the wall so far (in fact, García-Villalba & del
Álamo describe wall turbulence without global modes). We propose – in analogy to
the presence of external intermittency in the surface layer under neutral stratification
(cf. § 5.1) – that this is due to the large-scale global intermittency in the flow that
transfers information about large-scale modes from the outer layer of the flow to the
wall. As a consequence, even when the actual turbulent eddies are limited to a rather
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narrow spectral band due to stratification, large-scale modes from the outer layer
penetrate deeply into the surface layer by governing the large-scale patterns of local
laminarization.

But stratification not only impacts on correlations for large spatial separation: also
for small spatial separation the correlation increases substantially when stratification
becomes strong. This substantial increase is governed primarily by the large extent
of the non-turbulent regions and is thus not a useful measure when it comes to the
description of the small-scale turbulent motions within turbulent patches. Given the
apparently very similar morphology of the turbulent regions as inferred from flow
visualization, the difference in spectral or correlation analysis illustrates that these
methods might not be the most suitable to investigate stratification-induced changes
in the turbulent region of the flow. For the remainder of this work, we hence turn to
a conditional analysis of one-point statistics.

While, as pointed out above, a correlation analysis might make one expect
fundamental differences in the local structure of turbulent eddies, we show here
that this is actually not the case. Therefore, the investigation is constrained to local
properties of turbulent eddies within the patches of the flow that are turbulent with
respect to the conditioning method introduced above in § 4.1. When this is done,
the morphology of turbulence inside turbulent patches does not change substantially
under stable stratification; it is rather the size of the turbulent flow fraction which
causes order-one changes in conventional statistics.

Turbulent and non-turbulent sub-volumes of flow can be attributed to their source
region by analysing the conditional statistics of buoyancy and velocity. Inside
turbulent sub-volumes, the vertical velocity is positive and the streamwise velocity
reduces with respect to the non-turbulent sub-volumes (figure 9a,b,d,e). Reduced
streamwise velocity inside a turbulent patch implies decreased shear in the turbulent
partition. In terms of a quadrant analysis, this shows that turbulent sub-volumes
mainly contribute to stress in the second quadrant (u′< 0, w′> 0, ejections) while the
non-turbulent sub-volumes contribute to stress in the fourth quadrant (u′ > 0, w′ < 0,
sweeps). Buoyancy behaves very similar to the streamwise velocity and reduces in
turbulent sub-volumes with respect to their non-turbulent counterparts (figure 9c, f ).
This series of differences between the statistical properties conditioned to turbulent
and non-turbulent sub-volumes is a manifestation of the character of turbulence
events as it is suggested by a structural approach to wall-bounded turbulence (cf.
Adrian 2007): Turbulence is sustained by ejections from below, and the fluid inside
these sub-volumes originates from the wall. The fluid in non-turbulent sub-volumes
originates from the free stream.

The velocity and scalar profiles of the high-pass-filtered field uhi conditioned to
turbulent patches do not change substantially when the stratification is increased from
neutral to the weakly and intermediately stratified cases (figure 9d–f ). In contrast,
we observe significant changes for the strongly stratified case ri62. In this case, the
turbulent area fraction is very small (≈5 %) and the turbulence is just about to burst,
so that there exist no real turbulent patches yet (figure 2e, f ).

An indicator of turbulence is the dissipation rate of TKE (figure 10a). While in
case ri62 the dissipation rate in the entire flow is decreased by approximately an
order of magnitude, we see that when solely the turbulent sub-volumes are considered,
the dissipation is reduced by only ≈5 % with respect to the neutrally stratified flow.
The same holds for the cases ri31 and ri15 where the normalized dissipation
conditioned to turbulent sub-volumes is insensitive to the imposed stratification.
This further supports the above-mentioned similarity of the properties of the actual
turbulence structures across the different regimes of stratification investigated here.
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FIGURE 9. (Colour online) Vertical profiles of U, W, B (a–c), and Uhi, Whi, Bhi (d–f )
conditioned to non-turbulent and turbulent sub-volumes of the flow. The lines are drawn
if the area fraction contributing to a partition at a given level exceeds 1 %. The secondary
vertical axis applies to the neutrally stratified case only.

Another straightforward measure of turbulence is the TKE, which – in contrast to
vorticity – is accessible through point measurements given sufficient stationarity of the
flow. When considering the TKE, the concentration of dissipative flow structures into
the turbulent patches of the flow is best observed in terms of its vertical component
〈ww〉 (figure 10b). The uniformity of the small-scale structure of the turbulent
flow regardless of stratification seen above is, however, obscured by other effects.
The reason for this less clear distinction between the turbulent and non-turbulent
sub-volumes are the large-scale structures seen in figure 2. These large-scale structures
are more prominent in terms of absolute velocity than they are in terms of velocity
derivatives, i.e. the vorticity (cf. §§ 3, 4.2).

6. Discussion
6.1. Implications for resolution requirements in stably stratified flow

In previous sections we found – consistent with the signals in mean profiles – a
relatively small impact of stratification on the turbulence dissipation rate inside
turbulent patches when compared to the impact of stratification on the total signal.
This finding is in accordance with spectral analysis by García-Villalba & del Álamo
(2011) who show that the spectral peak caused by near-wall structures is retained
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FIGURE 10. (Colour online) Viscous dissipation rate of TKE (a) and TKE (b) conditioned
to turbulent and non-turbulent regions of the flow. The secondary vertical axis applies to
the neutrally stratified case only.

also under strong stratification. We show here, quantitatively, that the nature of the
turbulent signal does not depend on the stratification too strongly (as long as the
turbulent regions are not negligible in size), but that it is the size of the non-turbulent
fraction which governs the order-one decrease in turbulent dissipation and fluctuation
velocities when the flow is exposed to strong stratification.

A concentration of dissipative structures into a small volume fraction of the flow
has consequences for resolution requirements under stable stratification. A common
assumption when simulating stably stratified flows is that, due to a reduced level of
(mean) dissipation, the resolution required for a corresponding simulation without the
impact of stratification is always sufficient to study the stable case. In a globally
intermittent flow, the dissipation is, however, not distributed homogeneously on a large
scale and the reduction of the dissipation rate on average must not be mistaken for
an indicator of less strict resolution requirements: the global reduction of dissipation
is inappropriate as an estimator for the local extreme values of dissipation. A globally
intermittent flow hence requires higher resolution than a flow with the same averaged
dissipation rate that is turbulent throughout but with reduced turbulence intensity of
individual turbulence structures; despite the fact that the Kolmogorov length scale η
is only proportional to the power 1/4 of the dissipation, this can render a resolution
which is sufficient for the simulation of a neutrally stratified flow, insufficient for
the stable case. In fact, when we assume ε = 0 inside non-turbulent regions, it is
〈ε〉turb = γ −1〈ε〉global, or in terms of the Kolmogorov scale

ηturb = γ 1/4ηglobal. (6.1)

For a commonly encountered intermittency fraction of γ = 1/8, this implies that the
Kolmogorov scale ηglobal is ≈40 % larger than that inside turbulent regions, ηturb. On
top of this effect, we also observe that the peak values of dissipation (which are
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actually the important parameter when choosing the resolution) are higher in bursting
turbulence under stable stratification when compared to a homogeneously turbulent
neutrally stratified flow.

6.2. Implications for parameterizing turbulence in the atmospheric boundary layer
Our findings with regards to the turbulence structure under strong stratification have
implications for the parameterization of exchange coefficients in the stable boundary
layer. In agreement with previous work on the boundary layer and canonical flow
configurations under stable stratification (Flores & Riley 2011; Brethouwer et al.
2012; Chung & Matheou 2012; Deusebio, Caulfied & Taylor 2015), the present
results show that the absence of turbulence in extended regions of flow, even close
to the surface, is a ubiquitous phenomenon under very strong stratification. Once
turbulence cannot be fully sustained, the turbulent area fraction and the relative size
of the non-turbulent region is determined by the stratification strength, which is most
appropriately parameterized in terms of the Obukhov length expressed in wall units
L+O (Flores & Riley 2011; Deusebio et al. 2015). This means that global intermittency
arises from a global constraint on the flow, for instance, the exceedance of the
maximum sustainable heat flux as suggested in the literature (van de Wiel & Moene
2012; van de Wiel et al. 2012; van Hooijdonk et al. 2015). Local perturbations, such
as surface heterogeneities, simply determine the spatio-temporal distribution of global
intermittency (Acevedo & Fitzjarrald 2003; Sun et al. 2004, 2012), but they are not
necessary as a trigger.

Owing to the absence of surface heterogeneities in our set-up, the spatio-temporal
pattern of global intermittency close to the surface is caused by a large-scale
structure in the outer layer of the flow. The characteristic length scale of these
large-scale motions is of the order of the boundary-layer depth scale δ. A very
similar phenomenon is observed in homogeneously stratified sheared turbulence and
rotating Couette flow (Brethouwer et al. 2012; Chung & Matheou 2012), in both of
which no local or coherent perturbations are present. This agreement among a number
of different flow configurations suggests there is a very general mechanism behind
what is recently called ‘weak turbulence’ in an atmospheric context (Mahrt 2014).

In fact, our results imply new approaches to the parameterization of turbulence
exchange coefficients in the atmospheric boundary layer in this ‘weak-turbulence’
regime: the propitious case that the turbulence properties under stable stratification do
not change substantially, but that it is rather the size of the turbulent fraction which
changes, calls for factorized parameterization. In such a factorized parameterization,
the intermittency factor γ – expressed as a function of L+O – might be used together
with a common approach to modelling the weakly stratified boundary layer to
determine bulk statistical properties, such as the mean, variances or turbulence
viscosities. Such a parameterization can deliver a quantifiable and physically sound
explanation for long-tail formulations of turbulence exchange in the stable boundary
layer.

7. Conclusions
Conditional statistics of turbulent Ekman flow under neutral and stable stratification

have been discussed. For that purpose, we introduced a generalized conditioning
method based on the vorticity of high-pass filtered velocity fields and demonstrated
its capability to detect and characterize global intermittency in a stratified Ekman
flow. Under neutral stratification, the modified method yields results identical to those
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of the standard method based on the vorticity of the unfiltered field. In addition, the
modified method provides a spectral decomposition of the flow, and we provided
evidence that this decomposition is one into turbulence and wave modes in the stably
stratified cases. While this work only examines one particular flow where rotation and
strongly stable stratification interact, we expect that – subject to a tuning of the filter
length scale δ and the vorticity threshold ω0 – the method we put forward here also
applies to other flows with stabilizing body forces such as magneto-hydrodynamic
flows. Similarly, the present concept applies to stably stratified shear layers or rotating
flows without density stratification irrespective of their transitional character.

Conditional statistics of the neutrally stratified case illustrate the impact of external
intermittency on the logarithmic law: the prominent dip in ∂ ln z+/∂U+ in the upper
part of the logarithmic layer is related to external intermittency. This dip is reduced by
approximately 50 % when the velocity field is conditioned to only the turbulent sub-
volumes of the flow. As a consequence of lower velocity in the turbulent sub-volumes,
the estimate of the von Kármán constant increases slightly when estimated from a
conditioned field. When taking into account the external intermittency, the uncertainty
in estimating κ is reduced by approximately 50 %; our data support values in the range
0.41–0.43 for κ and 4.8–5.1 for A0.

Our modified conditioning method properly discriminates between non-turbulent
and turbulent flows under all classes of stability investigated here, including a
near-complete laminarization of the flow. Up to a stratification as strong as in
the case ri31, the character of individual turbulence elements is very similar to that
under neutral stratification, and we demonstrate that it is rather the extent γ of the
turbulent fraction which governs order-one changes in conventional statistics, instead
of a fundamental change in the individual elements of turbulence. This implies a need
for higher resolution in direct numerical simulation of stably stratified cases than what
is commonly claimed. Moreover, the conditional analysis conducted here suggests a
novel approach to the parameterization of what is now called ‘weak turbulence’ in
studies of the atmospheric boundary layer under strong stratification.
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Appendix A. An inviscid vortex-tilting mechanism in rotating flow

The vorticity equation for Ekman flow reads as

∂ω

∂t
+ (u · ∇)ω= (ω · ∇)u+ ν∇2u+ 2(Ω · ∇)u+ 2(u · ∇)Ω, (A 1)

where ω≡∇× u and Ω is the planetary rotation. It is readily seen that the planetary
rotation Ω constitutes a source term in this budget, and rewriting (A 1) in tensor
notation, one can use the f-plane approximation to replace 2Ω =: 2f êz:

∂ωi

∂t
+ uj

∂ωi

∂xj
=ωj

∂ui

∂xj
+ ν ∂

2ωi

∂x2
j
+ f

∂ui

∂z
. (A 2)
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FIGURE 11. (Colour online) Intermittency factor versus height for the case ri00 and the
lower-Re case re_low with Re = 7725 where the intermittency threshold is varied by a
factor of 8 (note that the variation in Re from 7725 to 26 450 corresponds to a variation
of ν by a factor of 4).

Compared with the non-rotating reference frame, there is the additional source f ∂zui

representing vortex tilting of planetary vorticity by a vertical gradient of streamwise
velocity. This term is also present in the enstrophy equation:

1
2

dω2
i

dt
=ωi

∂ujωi

∂xj
+ 1

2
ν

[
∂2ω2

i

∂x2
j
− 2

(
∂ωi

∂xj

)2
]
+ fωi

∂ui

∂z
. (A 3)

In the absence of vorticity, according to (A 2), the sign of ωi becomes that of f ∂zui,
making the last term of the right-hand side of (A 3) a source of enstrophy. This
means that in the presence of even weak velocity gradients in the irrotational region
of Ekman flow, vortex stretching of planetary vorticity generates mean vorticity
and vorticity at a rate proportional to the velocity gradient ∂zui and the Coriolis
parameter f . At some level of vorticity this process is balanced by dissipation; until
this happens vorticity is accumulated in the non-turbulent part of the boundary layer
causing a background enstrophy that smears out the jump in enstrophy magnitude
between turbulent and non-turbulent parts when compared to other (non-rotating)
flows. The Re independence of 〈u(z)〉 (Ansorge & Mellado (2014)) in the outer layer
suggests that the term f 〈ωx〉∂z〈u〉 scales inviscidly, and this mechanism is independent
of the Reynolds number. The inviscid nature of the vortex-tilting mechanism is
seen in figure 11 where the sensitivity of γ (z) to the vorticity threshold does not
depend significantly on the Reynolds number. It is concluded that this vortex tilting,
irrespective of Re, is a fundamental mechanism in Ekman flow rendering the outer,
non-turbulent layer different from non-rotating external flows.
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