Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-z4vvc Total loading time: 0.249 Render date: 2021-03-05T17:50:53.047Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Triadic scale interactions in a turbulent boundary layer

Published online by Cambridge University Press:  25 February 2015

Subrahmanyam Duvvuri
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
Beverley J. McKeon
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
Corresponding
E-mail address:

Abstract

A formal relationship between the skewness and the correlation coefficient of large and small scales, termed the amplitude modulation coefficient, is established for a general statistically stationary signal and is analysed in the context of a turbulent velocity signal. Both the quantities are seen to be measures of phase in triadically consistent interactions between scales of turbulence. The naturally existing phase relationships between large and small scales in a turbulent boundary layer are then manipulated by exciting a synthetic large-scale motion in the flow using a spatially impulsive dynamic wall roughness perturbation. The synthetic scale is seen to alter the phase relationships, or the degree of modulation, in a quasi-deterministic manner by exhibiting a phase-organizing influence on the small scales. The results presented provide encouragement for the development of a practical framework for favourable manipulation of energetic small-scale turbulence through large-scale inputs in a wall-bounded turbulent flow.

Type
Rapids
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.

References

Bandyopadhyay, P. R. & Hussain, A. K. M. F. 1984 The coupling between scales in shear flows. Phys. Fluids 27 (9), 22212228.CrossRefGoogle Scholar
Brown, G. L. & Thomas, A. S. W. 1977 Large structure in a turbulent boundary layer. Phys. Fluids 20 (10), S243S252.CrossRefGoogle Scholar
Chung, D. & McKeon, B. J. 2010 Large-eddy simulation of large-scale structures in long channel flow. J. Fluid Mech. 661, 341364.CrossRefGoogle Scholar
Duvvuri, S. & McKeon, B. J.2014 Phase relationships in presence of a synthetic large-scale in a turbulent boundary layer. In 44th AIAA Fluid Dynamics Conference, Atlanta, GA, June 2014. AIAA Paper 2014-2883.Google Scholar
Hussain, A. K. M. F. & Reynolds, W. C. 1970 The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41, 241258.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A 365, 647664.CrossRefGoogle ScholarPubMed
Jacobi, I. & McKeon, B. J. 2011 Dynamic roughness perturbation of a turbulent boundary layer. J. Fluid Mech. 688, 258296.CrossRefGoogle Scholar
Jacobi, I. & McKeon, B. J. 2013 Phase relationships between large and small scales in the turbulent boundary layer. Exp. Fluids 54, 1481.CrossRefGoogle Scholar
Marusic, I., Mathis, R. & Hutchins, N. 2010 Predictive model for wall-bounded turbulent flow. Science 329, 193196.CrossRefGoogle ScholarPubMed
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.CrossRefGoogle Scholar
Mathis, R., Marusic, I., Hutchins, N. & Sreenivasan, K. R. 2011 The relationship between the velocity skewness and the amplitude modulation of the small scale by the large scale in turbulent boundary layers. Phys. Fluids 23, 121702.CrossRefGoogle Scholar
Rao, K. N., Narasimha, R. & Narayanan, M. A. B. 1971 The ‘bursting’ phenomenon in a turbulent boundary layer. J. Fluid Mech. 48, 339352.CrossRefGoogle Scholar
Schlatter, P. & Örlu, R. 2010 Quantifying the interaction between large and small scales in wall-bounded turbulent flows: a note of caution. Phys. Fluids 22, 051704.CrossRefGoogle Scholar
Sharma, A. S. & McKeon, B. J. 2013 On coherent structure in wall turbulence. J. Fluid Mech. 728, 196238.CrossRefGoogle Scholar
Talluru, K. M., Baidya, R., Hutchins, N. & Marusic, I. 2014 Amplitude modulation of all three velocity components in turbulent boundary layers. J. Fluid Mech. 746, R1.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 35
Total number of PDF views: 553 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Triadic scale interactions in a turbulent boundary layer
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Triadic scale interactions in a turbulent boundary layer
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Triadic scale interactions in a turbulent boundary layer
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *