Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-2l47r Total loading time: 0.228 Render date: 2021-04-12T14:19:23.376Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Phase trapping and slipping in a forced hydrodynamically self-excited jet

Published online by Cambridge University Press:  29 October 2013

Larry K. B. Li
Affiliation:
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
Matthew P. Juniper
Affiliation:
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
Corresponding
E-mail address:

Abstract

In a recent study on a coupled laser system, Thévenin et al. (Phys. Rev. Lett., vol. 107, 2011, 104101) reported the first experimental evidence of phase trapping, a partially synchronous state characterized by frequency locking without phase locking. To determine whether this state can arise in a hydrodynamic system, we reanalyse the data from our recent experiment on a periodically forced self-excited low-density jet (J. Fluid Mech., vol. 726, 2013, pp. 624–655). We find that this jet exhibits the full range of phase dynamics predicted by model oscillators with weak nonlinearity. These dynamics include (i) phase trapping between phase drifting and phase locking when the jet is forced far from its natural frequency and (ii) phase slipping during phase drifting when it is forced close to its natural frequency. This raises the possibility that similar phase dynamics can be found in other similarly self-excited flows. It also strengthens the validity of using low-dimensional nonlinear dynamical systems based on a universal amplitude equation to model such flows, many of which are of industrial importance.

Type
Rapids
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.

References

Aronson, D. G., Ermentrout, G. B. & Kopell, N. 1990 Amplitude response of coupled oscillators. Physica D 41 (3), 403449.CrossRefGoogle Scholar
Balanov, A., Janson, N., Postnov, D. & Sosnovtseva, O. 2009 1:1 forced synchronization of periodic oscillations. In Synchronization: From Simple to Complex, chap. 3. Springer.Google Scholar
Chakravarthy, S. R., Shreenivasan, O. J., Boehm, B., Dreizler, A. & Janicka, J. 2007 Experimental characterization of onset of acoustic instability in a nonpremixed half-dump combustor. J. Acoust. Soc. Am. 122 (1), 120127.CrossRefGoogle Scholar
Davitian, J., Getsinger, D., Hendrickson, C. & Karagozian, A. R. 2010 Transition to global instability in transverse-jet shear layers. J. Fluid Mech. 661, 294315.CrossRefGoogle Scholar
Emerson, B., O’Connor, J., Juniper, M. & Lieuwen, T. 2012 Density ratio effects on reacting bluff-body flow field characteristics. J. Fluid Mech. 706, 219250.CrossRefGoogle Scholar
Getsinger, D. R., Hendrickson, C. & Karagozian, A. R. 2012 Shear layer instabilities in low-density transverse jets. Exp. Fluids 53 (3), 783801.CrossRefGoogle Scholar
Gyergyek, T. 1999 Experimental study of the nonlinear dynamics of a harmonically forced double layer. Plasma Phys. Control. Fusion 41 (2), 175190.CrossRefGoogle Scholar
Hallberg, M. P. & Strykowski, P. J. 2008 Open-loop control of fully nonlinear self-exrefd oscillations. Phys. Fluids 20 (4), 041703.CrossRefGoogle Scholar
Holmes, P. J. & Rand, D. A. 1978 Bifurcations of the forced van der Pol oscillator. Q. Appl. Maths 35, 495509.CrossRefGoogle Scholar
Huygens, C. 1673 The pendulum clock. In Horologium Oscillatorium. Iowa State University Press, (translated in 1986).Google Scholar
Karniadakis, G. E. & Triantafyllou, G. S. 1989 Frequency selection and asymptotic states in laminar wakes. J. Fluid Mech. 199, 441469.CrossRefGoogle Scholar
Khalak, A. & Williamson, C. H. K. 1999 Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. J. Fluid Struct. 13, 813851.CrossRefGoogle Scholar
Li, L. K. B. & Juniper, M. P. 2013a Lock-in and quasiperiodicity in a forced hydrodynamically self-exrefd jet. J. Fluid Mech. 726, 624655.CrossRefGoogle Scholar
Li, L. K. B. & Juniper, M. P. 2013b Lock-in and quasiperiodicity in hydrodynamically self-exrefd flames: experiments and modelling. Proc. Combust. Inst. 34 (1), 947954.CrossRefGoogle Scholar
Mehdi-Nejad, V., Farhadi, F. & Ashgriz, N. 2005 Naturally induced oscillations in twin-fluid atomizers. In 18th Annual Conference on Liquid Atomization and Spray Systems. ILASS Americas.Google Scholar
Meliga, P. & Chomaz, J. M. 2011 An asymptotic expansion for the vortex-induced vibrations of a circular cylinder. J. Fluid Mech. 671, 137167.CrossRefGoogle Scholar
Monkewitz, P. A. 1996 Modelling of self-exrefd wake oscillations by amplitude equations. Exp. Therm. Fluid Sci. 12 (2), 175183.CrossRefGoogle Scholar
Olinger, D. J. 1992 Lock-in states in the dripping mode of the capillary jet. Exp. Fluids 15 (2), 155158.CrossRefGoogle Scholar
Penelet, G. & Biwa, T. 2013 Synchronization of a thermoacoustic oscillator by an external sound source. Am. J. Phys. 81 (4), 290297.CrossRefGoogle Scholar
Pikovsky, A. S., Rosenblum, M. G. & Kurths, J. 2003 Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press.Google Scholar
van der Pol, B. 1927 Forced oscillations in a circuit with nonlinear resistance. Phil. Mag. 3 (13), 6580.CrossRefGoogle Scholar
Provansal, M., Mathis, C. & Boyer, L. 1987 Bénard–von Kármán instability: transient and forced regimes. J. Fluid Mech. 182, 122.CrossRefGoogle Scholar
Shampine, L. F. & Reichelt, M. W. 1997 The MATLAB ODE suite. SIAM J. Sci. Comput. 18 (1), 122.CrossRefGoogle Scholar
Sreenivasan, K. R., Raghu, S. & Kyle, D. 1989 Absolute instability in variable density round jets. Exp. Fluids 7 (5), 309317.CrossRefGoogle Scholar
Thévenin, J., Romanelli, M., Vallet, M., Brunel, M. & Erneux, T. 2011 Resonance assisted synchronization of coupled oscillators: frequency locking without phase locking. Phys. Rev. Lett. 107 (10), 104101.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 221 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 12th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Phase trapping and slipping in a forced hydrodynamically self-excited jet
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Phase trapping and slipping in a forced hydrodynamically self-excited jet
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Phase trapping and slipping in a forced hydrodynamically self-excited jet
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *